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Abstract

Communication can facilitate agents to gain a better understanding of the environment
and to coordinate their behaviors in multi-agent deep reinforcement learning (MADRL).
However, in certain applications, communication is not available during execution due to
factors such as security concerns or limited resources. This paper focuses on a decentralized
MADRL setting where communication is used only during training, but not during execution,
enabling the learning of coordinated behaviors while keeping decentralized execution. While
beneficial, communication can introduce uncertainty, potentially increasing the variance in
the learning process of decentralized agents. We conduct the first theoretical analysis to study
the variance that is caused by communication in policy gradients using actor-critic methods.
Motivated by our theoretical analysis, we propose modular techniques that are designed based
on our analytical findings to reduce the variance in policy gradients with communication. We
incorporate these techniques into two existing algorithms developed for decentralized MADRL
with communication and evaluate them on multiple multi-agent tasks in the StarCraft Multi-
Agent Challenge and Traffic Junction domains. The results demonstrate that decentralized
MADRL communication methods extended with our proposed techniques not only achieve
high-performing agents but also reduce variance in policy gradients during training.

1 Introduction

Numerous real-world scenarios involve multiple agents interacting within a shared environment, spanning
domains like autonomous driving (Shalev-Shwartz et al., 2016), robotics (Kober et al., 2013), and game playing
(Silver et al., 2017; Brown & Sandholm, 2019). Multi-agent Deep Reinforcement Learning (MADRL) has
been widely used to develop cooperative behaviors of agents in partially observable environments (Gronauer
& Diepold, 2022; Oroojlooy & Hajinezhad, 2023; Yang & Wang, 2020). MADRL agents can communicate
various types of information, including observations, intentions, and experiences, to mitigate the limitations
in agent observability and enhance the coordination of their behaviors (Zhu et al., 2024; Zaïem & Bennequin,
2019; Gronauer & Diepold, 2022). In recent years, there has been growing research interest in MADRL that
focuses on communication via a range of values as encoded messages, rather than directly sharing agents’
private and massive local information (Zhu et al., 2024). These research works are known as MADRL with
learning communication (Comm-MADRL), which aims to establish adaptive and learnable communication
protocols. Within the Comm-MADRL field, several settings have been utilized, focusing on whether agents
are trained in a decentralized or centralized manner, and whether communication is possible during training
or policy execution (Gronauer & Diepold, 2022; Zhu et al., 2024).

In practical applications such as UAVs, concerns about security or limited resources often necessitate that
agents operate independently without communication, yet in a coordinated manner (Cavalcante et al., 2012;
Skorobogatov et al., 2020). In such applications, decentralized and coordinated behaviors of independent agents
without sharing information during execution become essential. To support such applications, communication
can be introduced only during the training phase, ensuring and enhancing learning coordinated behaviors
efficiently and effectively. Previous work has explored the use of actor-critic method and proposed to
incorporate communication into critics but not actors such that critics (value functions) guide the training of
actors (policies) (Iqbal & Sha, 2019; Liu et al., 2020). During execution, the critics can be discarded, and
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only the actors are deployed. By allowing communication among independent critics during training, we can
benefit from information sharing while still developing efficient and secure policies. In the rest of this paper,
we build on these approaches and coin the term Decentralized Communicating Critics and Decentralized
Actors (DCCDA) to refer to the settings where critics can communicate during training while independent
actors cannot communicate neither during training nor during execution.

In DCCDA, instead of relying on predefined or full communication, agents learn to communicate low-
dimensional messages (e.g., continuous or discrete values) among their respective critics, thereby reducing
communication overhead and enabling adaptive communication. Under DCCDA, communication directly
influences the critics and indirectly impacts the actors through the guidance provided by the communicating
critics. The critics, actors, and communication modules are trained jointly toward convergence and enjoy
computational efficiency from decentralized training. Despite the promising applications of DCCDA, commu-
nication can introduce challenges when incorporated into the critics. Specifically, communicated messages
are often generated in a stochastic manner (Foerster et al., 2016; Jiang & Lu, 2018) such that, from the
perspective of receiver agents, using messages as additional inputs to their critics introduces uncertainty
during value estimation. As a result, the policy gradients of actors guided by communicating critics may
exhibit high variance, leading to low sample efficiency and performance degradation. Previous research has
focused on variance analysis in policy gradients without communication (Lyu et al., 2023; 2021), and thus
not measuring variance caused by communication.

In this work, we conduct the first theoretical analysis of the variance in policy gradients within Comm-
MADRL under the DCCDA setting. Variance analysis is a vigorous method that allows us to investigate
the variability and dispersion of policy learning. Through our variance analysis, we prove that in both
idealistic communication setting (where critics communicate sound & complete information) and non-idealistic
communication setting (where sound & complete information is corrupted with noise), policy gradients under
communicating critics (in the DCCDA setting) have equal or higher variance than that of the centralized
critic. Our variance analysis motivates us to reduce the variance in policy gradients using communicating
critics. A widely used approach for variance reduction is the baseline technique (Greensmith et al., 2004;
Weaver & Tao, 2001; Wu et al., 2018; Kuba et al., 2021). Existing baseline techniques are designed to mitigate
variance arising from states or actions, while do not account for the variance induced by communication
among agents. Moreover, the application of existing baseline techniques to communication methods is not
straightforward, which may not optimally reduce the variance caused by communication.

In this paper, we propose a message-dependent baseline technique that targets the variance caused by
communicated messages. We further derive the optimal form of our proposed baseline and theoretically
prove that it reduces the variance in policy gradients. Additionally, we observe that the introduction of
our variance reduction technique can negatively affect the learning performance of agents. To mitigate this
effect, we propose a novel use of KL divergence as a regularization technique for aligning the actors and
critics. Specifically, our proposed KL regularization technique ensures that the experience generated by the
actors is aligned with the decentralized communicating critics, thereby enhancing the critics’ learning process.
The two proposed techniques can be applied to any Comm-MADRL method under DCCDA. To show the
effectiveness and efficiency of our proposed techniques, we extend two existing MADRL methods under the
DCCDA setting and evaluate the two methods with and without our techniques on multiple tasks in two
benchmark environments, StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) and Traffic
Junction (Singh et al., 2019). The results show that our proposed techniques can reduce the variance in
policy gradients caused by communication under DCCDA and significantly improve learning performance.

2 Related Works

To position our focused DCCDA setting within the broader literature on MADRL, we illustrate various
settings, with and without learning communication, across training and execution phases in Figure 1. Note
that we specifically focus on actor-critic methods, which align with the DCCDA setting used in our work.
We have summarized 5 settings in the MADRL literature: (Setting 1) Centralized Training and Decentralized
Execution (CTDE) without learning communication, (Setting 2) CTDE with communicating actors, (Setting
3) Decentralized Training and Decentralized Execution (DTDE) without learning communication, (Setting
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Figure 1: The training and execution phases for CTDE (without communication), CTDE (with communication),
DTDE (without communication), and DCCDA using actor-critic methods.

4) DTDE with communicating critics and actors, and (Setting 5) DCCDA which features communicating
critics.1 Among them, Settings 1&2 use predefined full information during centralized training. Settings
2&4 require communicating actors during both training and execution, which may not satisfy practical
requirements of security and limited resource as motivated in the introduction. Setting 3 is different from
other settings as communication is not utilized in training or execution phases. Setting 5 is the DCCDA,
which is fundamentally different from other settings, does not rely on predefined (full) information and agents
keep their own critics and actors. DCCDA can be comparable to Setting 1 in certain cases, particularly
when critics in DCCDA share full information deterministically, without any stochasticity in their messages.
However, the key difference between Setting 1 and DCCDA is that Setting 1 utilizes a single centralized critic,
whereas DCCDA employs a separate critic for each agent to improve learning efficiency. In DCCDA, agents
learn how and to whom they communicate. By using low-dimensional messages, the input dimensionality of
each critic in DCCDA can be significantly smaller than that of the centralized critic in Setting 1, which brings
computational efficiency. Due to the similarity between DCDDA and Setting 1 in certain cases, we compare
DCCDA with Setting 1 in our theoretical analysis to show that they have different variance properties. We
also illustrate the differences in the schematic diagrams of DCCDA and CTDE in Appendix D.1.
Learning Communication in MADRL Previous works mainly focus on learning efficient and effective
communication to improve task-level performance under either the CTDE with communication setting
(Foerster et al., 2016; Zhang et al., 2019; Das et al., 2019) (Setting 2) or the DTDE with communication
setting (Iqbal & Sha, 2019; Liu et al., 2020) (Settings 4 and 5). In CTDE with communication, existing
research works utilize either a shared Q-function (Foerster et al., 2016; Jiang & Lu, 2018; Peng et al., 2017),
centralized but factorized Q-functions (Zhang et al., 2019; Wang et al., 2020b; Zhang et al., 2020; Yuan
et al., 2022; Guan et al., 2023; Sun et al., 2024), or simply a joint value function/returns (Sukhbaatar et al.,
2016; Das et al., 2019; Mao et al., 2020; Ding et al., 2020; Guo et al., 2023; Sun et al., 2024) to enable
efficient training of communication architectures. Specifically, in actor-critic methods under CTDE with
communication, agents ues communicating actors, where encoded messages are often viewed as additional
inputs for policies, such as CommNet (Sukhbaatar et al., 2016), BiCNet (Peng et al., 2017), ATOC (Jiang &
Lu, 2018), TarMAC (Das et al., 2019), I2C (Ding et al., 2020), GACML (Mao et al., 2020), and T2MAC
(Sun et al., 2024). These methods require explicit message transmission among agents during both policy
updates in training and policy execution.

Compared to CTDE with communication, communication in the DTDE setting is under-explored. The
existing works mainly rely on actor-critic methods (Iqbal & Sha, 2019; Liu et al., 2020; Niu et al., 2021;
Chen et al., 2024) (Settings 4 and 5). When communication is allowed between individual critics (i.e., the
DCCDA setting), learning communication relies on MAAC (Iqbal & Sha, 2019) and its variant GAAC (Liu
et al., 2020). In MAAC, agents individually determine their actions under their Q-functions, while receiving
and aggregating information from other agents during learning Q-functions. Based on MAAC, GAAC
proposes to incorporate graph neural networks in the critic (Q) network to aggregate important information
from neighboring agents. MAAC and GAAC can realize fully decentralized execution by discarding their

1For simplicity, we use CTDE to refer to CTDE without learning communication, and DTDE to refer to DTDE without
learning communication.
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communicating critics. In the specific case where agents communicate full information deterministically
rather than learning to communicate in a stochastic manner, MADDPG (Lowe et al., 2017) is used to provide
each agent with an individual but global Q-function as a critic to guide the learning of decentralized actors.
When communication is allowed among actors in DTDE with communication under Setting 4, it can be
combined with Setting 5 to enable communication among both critics and actors. In such a combined setting,
MAGIC (Niu et al., 2021) is proposed to learn how to schedule encoded messages. In MAGIC, each agent’s
critic and actor share the same neural network components, including the communication architecture, which
also allows the exchange of encoded messages between critics. Additionally, under Setting 4, RGMComm
(Chen et al., 2024) introduces a setup where each agent incorporates encoded messages into its policies. Each
agent also employs an individual Q-function as a critic, considering the actions and observations of all other
agents, implicitly assuming full observability during training. In contrast, DCCDA methods (e.g., MAAC and
GAAC) under Setting 5 do not involve message sharing among actors during execution, allowing decentralized
execution without communication while still benefiting from communication during training.

Other communication methods using value-based approaches (which do not involve actors) rely on value
decomposition techniques, which allow for message sharing among centralized but factorized value functions,
such as VBC (Zhang et al., 2019), NDQ (Zhang et al., 2020), MAIC (Yuan et al., 2022), MASIA (Guan et al.,
2023), CACOM (Li & Zhang, 2024), and MAGI (Ding et al., 2024). In these methods, policies are derived
from decomposed Q-values during execution, and communication is considered when determining the values
and execution of actions. In addition to learning communication in MADRL, we also notice research works
considering predefined communication with DTDE, where agents share experience buffers to enhance training
(Christianos et al., 2020; Gerstgrasser et al., 2023). However, in these studies, communication is not the
subject of learning, and directly sharing experience buffers may raise security concerns for individual agents.
Moreover, a bunch of research works consider communication between decentralized agents and a central server
to achieve low regret using no-regret algorithms, to provide provable regret bounds under cooperative agents
(Dubey & Pentland (2021)), asynchronous communication (Min et al. (2023)), and randomized exploration
(Hsu et al. (2024)). In contrast, our work considers communication among decentralized agents without
assuming the presence of a central server. As none of the above studies address the issue of high variance
when communication is learned and integrated into policy gradients, our theoretical analysis, along with the
proposed techniques, can offer important insights and solutions to mitigate this challenge effectively.

Variance Reduction in MADRL Variance reduction is an essential topic in MADRL (Tucker et al.,
2018; Kuba et al., 2021). Previous works have built a theoretical analysis of the variance in policy gradients
without considering communication. Lyu et al. (2021; 2023) theoretically contrast policy gradients under
CTDE and DTDE settings and claim that the uncertainty of other agents’ observations and actions appeared
in centralized Q-functions can increase the variance in policy gradients. One of the most successfully applied
and extensively studied methods to reduce variance is known as the baseline technique (Wu et al., 2018;
Foerster et al., 2018; Kuba et al., 2021). Concretely, Wu et al. (2018) utilizes an action-dependent baseline to
eliminate the influence of the other agents’ policies. Foerster et al. (2018) introduces a counterfactual baseline
that marginalizes out a single agent’s action, while keeping the other agents’ actions fixed. More recently,
Kuba et al. (2021) mathematically analyze the variance of policy gradients under CTDE and quantify how
agents contribute to the total variance. They propose a baseline technique to achieve minimal variance when
estimating policy gradients under CTDE. In summary, existing baseline techniques consider the source of
variance from the uncertainty in other agents’ observations or actions. In contrast, our baseline technique
considers the source of variance from the uncertainty in messages, which are generated in a stochastic manner.
To the best of our knowledge, this is the first work to study variance in policy gradients considering learning
communication in decentralized MADRL and propose a baseline technique to decrease such variance.

3 Preliminaries

3.1 Multi-Agent Reinforcement Learning

We consider cooperative multi-agent tasks where a team of agents interacts within the same environment
to achieve some common goals. The tasks are generally modeled as decentralized partially observable
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Markov decision processes (Dec-POMDPs) (Oliehoek & Amato, 2016). A Dec-POMDP is defined by a
tuple

〈
I,S, ρ0, {Ai} , P, {Oi} , O,R, γ

〉
, where I is a set of (finite) agents indexed as {1, ..., N}, S is a set

of environment states, ρ0 is the initial state distribution, Ai is a set of actions available to agent i, and Oi

is a set of observations of agent i. We denote a joint action space as A = ×i∈IAi and a joint observation
space as O = ×i∈IOi. Therefore, transition function P : S ×A→ ∆(S) specifies the transition probability
p(s′|s, a) from state s ∈ S to new state s′ ∈ S given joint action a = ⟨a1, ..., aN ⟩ and a ∈ A. With
the environment transitioning to new state s′, given joint action a, the probability of a joint observation
o = ⟨o1, ..., oN ⟩ (o ∈ O) is determined according to the observation function O : S ×A→ ∆(O). Each agent
then receives a shared reward according to the reward function R : S ×A→ R. The rewards rt = R(st, at)
are discounted by the discount factor γ over time step t. The joint policy π of agents induces an on-policy
joint Q-function: Qπ(s, a) = Est∼P,at∼π[

∑T
t=0 γtrt|s0 = s, a0 = a], which is the expected discounted return

by applying the joint action a and following the joint policy afterward till the time horizon T . Note that
the on-policy Q-function is learned using a replay buffer, which is refreshed at every update. Whenever the
state s is not observable, we use the joint history h = {h1, ..., hN} instead, where hi = (oi

0, ai
0, ..., oi

t) is the
individual observation-action history of agent i up to time step t. Therefore, we obtain the history-based
joint Q-function Qπ(h, a) (Lyu et al., 2021). During implementation, histories are often processed using
LSTM neural networks (Omidshafiei et al., 2017), which stack past observations and actions into fixed-size
memory cells. For notational readability, we omit the time step t.

3.2 Policy Gradients under Different Settings

Policy gradients under CTDE In various policy gradient methods under CTDE, e.g., MAPPO (Yu
et al., 2022) and COMA (Foerster et al., 2018), a centralized and joint critic (e.g., a joint Q-function) is used
to guide the learning of decentralized actors (policies). Following the setting of Lyu et al. (2023), the CTDE
policy gradient of agent i is defined as follows:

gi
CT DE

.= Eh,a[Qπ(h, a)∇θi log πi(ai|hi, θi)]

where Qπ(h, a) is the on-policy joint values and θi is the parameters of policy πi. We further follow
the work of Lyu et al. to use ĝi

CT DE to denote the (single-sample) estimate of gi
CT DE , i.e., ĝi

CT DE =
Qπ(h, a)∇θi

log πi(ai|hi, θi). Agent i then utilizes gi
CT DE to update parameter θi. In CTDE, Q-function

Qπ(h, a) gathers information from all agents during training phases, while each actor πi(ai|hi, θi) do not
communicate and can be used for decentralized execution.

Policy gradients under DTDE In various policy gradient methods under DTDE, e.g., IPPO (Yu et al.,
2022), an individual and local critic is used to guide the learning of decentralized policies. Similarly, by
following the setting of Lyu et al. (2023), the DTDE policy gradient of agent i is defined as follows:

gi
DT DE

.= Eh,a[Qπ
i (hi, ai)∇θi

log πi(ai|hi, θi)]

where Qπ
i (hi, ai) is the on-policy values of agent i. Similarly, ĝi

DT DE is used to denote the (single-sample)
estimate of gi

DT DE , i.e., ĝi
DT DE = Qπ

i (hi, ai)∇θi
log πi(ai|hi, θi). Each agent i then performs gradient updates

to update its actor, parameterized by θi. In DTDE, both critics and actors do not communicate and can be
trained and executed in a fully decentralized manner.

Policy gradients under DCCDA Similar to policy gradients in CTDE and DTDE, we formulate the
policy gradients under DCCDA based on the literature (Iqbal & Sha, 2019; Liu et al., 2020). Essentially, we
define messages mi as being generated from a probabilistic message function based on each agent’s history
(hi) and actions from the actor (ai): mi ∼ fmsg(·|hi, ai), where function fmsg is typically implemented
using neural networks with learnable parameters θmsg. Different DCCDA methods define message mi in
various ways. For example, GAAC (Liu et al., 2020) employs a two-layer attention mechanism to produce
a vector of continuous values as messages. In our experiments, we consider different strategies for using
continuous and discrete values as messages in two respective DCCDA methods. Then, with broadcast
communication, we denote the received messages of agent i from all the other agents (denoted as −i) as
m−i = {m1, ..., mi−1, mi+1, ..., mN}. The DCCDA policy gradient of receiver agent i given by on-policy
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values is defined as follows:

gi
DCCDA

.= Eh,a,m[Qπ
i (hi, ai, m−i)∇θi

log πi(ai|hi, θi)]

where Qπ
i (hi, ai, m−i) is the on-policy Q-values of agent i. Similarly, ĝi

DCCDA is used to denote the (single-
sample) estimate of gi

DCCDA, i.e., ĝi
DCCDA = Qπ

i (hi, ai, m−i)∇θi
log πi(ai|hi, θi). In DCCDA, each agent has

its own critic that takes messages from other agents as an additional input. During training, communication
directly affects the critics and indirectly influences the actors via the policy gradients. Regarding the learning
of communication with respect to fmsg, we adopt two strategies following the literature in Comm-MADRL
(Foerster et al., 2016): one uses backpropagation to propagate gradients from the critics to the communication
modules through the communication channel, while the other leverages environmental rewards to update
fmsg. The critics, actors, and the message functions are learned jointly towards convergence.

4 Methods

During training in DCCDA, agents communicate a range of values (or a vector of values) as messages rather
than the entire local information, which avoids sharing private information and reduces communication
overhead. With communication, messages are then integrated into receiver agents’ critics, guiding the gradient
updates of their actors (policies). During execution in DCCDA, agents can discard communicating critics
and use actors to make decisions independently and locally. We are interested in how messages affect the
policy updates of receiver agents in the training period. We specifically focus on how policy gradients diverge,
in terms of the variance measurement. Inspired by previous variance analysis in MADRL with CTDE and
DTDE settings (Lyu et al., 2021; Kuba et al., 2021; Lyu et al., 2023), we conduct variance analysis in DCCDA
policy gradients, focusing on the variance induced by communication. In our variance analysis, we consider
both idealistic communication and non-idealistic communication settings. In both scenarios, we demonstrate
that the variance of DCCDA policy gradients can be equal to or higher than that of CTDE policy gradients.
Motivated by the variance analysis, we propose techniques for practical learning of agents, to reduce the
potential variance introduced by communication and to improve value learning.

4.1 Variance Analysis

Idealistic Communication Setting. We first consider an idealistic communication setting by assuming
the existence of a perfect message decoder. Under such idealistic scenarios, the decentralized communicating
critics Qπ

i (hi, ai, m−i) and the centralized critics Qπ(h, a) can be related as communication induces complete
and sound information from all agents. However, the probabilistic nature of messages (as commonly used by
MADRL with communication methods) can lead to variance in policy gradient samples. Hence, we come to
the following theorem:
Theorem 1. The DCCDA sample gradient has a variance greater or equal than that of the CTDE sample
gradient in idealistic communication setting: V ar(ĝi

DCCDA) ≥ V ar(ĝi
CT DE).

Proof Sketch (full proof in Appendix A.1). We leverage the Bellman equation to find the equivalence
between Qπ

i (hi, ai, m−i), used as critics in ĝi
DCCDA, and Qπ(h, a), used as critics in ĝi

CT DE . Essentially, as
Qπ(h, a) and the expected value of Qπ

i (hi, ai, m−i) over messages converge to the unique fixed point, we
get: Qπ(h, a) = Em−i|h,a[Qπ

i (hi, ai, m−i)]. Based on this, we find that ĝi
DCCDA and ĝi

CT DE are equal in
expectation such that the difference between V ar(ĝi

DCCDA) and V ar(ĝi
CT DE) ends with an expectation of

the square of gradients minus the square of the expectation of gradients. According to Jensen’s inequality, we
conclude that V ar(ĝi

DCCDA) is equal to or higher than V ar(ĝi
CT DE).

Non-idealistic Communication Setting. We now consider the variance analysis under a non-idealistic
communication setting, where messages received by agent i are corrupted by a noise term ϵi. The noise
term can come from the imperfection of decoders, e.g., due to the use of neural networks. To simplify the
analysis, we lift noise in received messages to Q-values, where m−i =< h−i, a−i, ϵi > for receiver agent i,
leading to Qπ

i (hi, ai, m−i) = Qπ
i (hi, ai, < h−i, a−i, ϵi >) = Qπ

i (h, a, ϵi). The individual but joint Q-function
with additive noise, Qπ

i (h, a, ϵi), is used as the critics of decentralized actors, forming a noise version of
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DCCDA policy gradients ĝi
DCCDA−noise. Inspired by Wang et al. (2020a), the noise term can affect the

rewards received by each agent, such as flipping the sign in case the reward is binary. We then prove that
removing the effect of the noise term (thereby become unbiased) can still increase variance, resulting in the
following theorem:
Theorem 2. The noisy version of DCCDA sample gradient has a variance greater or equal than that of the
CTDE sample gradient in non-idealistic communication setting: V ar(ĝi

DCCDA−noise) ≥ V ar(ĝi
CT DE).

Proof Sketch (full proof in Appendix B.1). We first relate the noise term with the probability of changes
in rewards. Inspired by Wang et al. (2020a), a surrogate reward function can be defined to remove the
effect of noise in rewards. Upon the surrogate reward function, we define a surrogate Q-function Q̂π

i (h, a, ϵi).
By summing up noisy terms ϵi, the expected value of Q̂π

i (h, a, ϵi) is shown to be equal to the centralized
Q-function Qπ(h, a) (defined on noise-free rewards in Dec-POMDP), i.e., Qπ(h, a) = Eϵi [Q̂π

i (h, a, ϵi)] by
induction proof. The equality greatly simplifies the variance analysis between the noise version of DCCDA
policy gradients ĝi

DCCDA−noise (using Q̂π
i (h, a, ϵi) as critics) and the CTDE policy gradients ĝi

CT DE (using
Qπ(h, a) as critics). By comparing the variance in gradients, we have V ar(ĝi

DCCDA−noise) ≥ V ar(ĝi
CT DE).

4.2 The Message-dependent Baseline Technique and Regularized Policies

Inspired by our variance analysis, communication in DCCDA policy gradients can introduce variance in
both the idealistic and non-idealistic communication settings. To mitigate the variance introduced by
communication, we adopt a baseline technique inspired by the literature on variance reduction in MADRL
(Kuba et al., 2021; Wu et al., 2018). However, existing baseline methods are designed to address variance from
states and actions, without considering histories or communicated messages. To address this gap, we propose
a novel message-dependent baseline and derive its optimal formulation to minimize the variance induced by
communication. As variance reduction may affect the learning performance of MADRL algorithms, we also
investigate how to enhance the learning of decentralized communicating critics and decentralized actors in
DCCDA. Specifically, the communicating critics implicitly suggest that experience is generated by policies
with communication. However, in DCCDA, decentralized policies (πi(ai|hi, θi)) do not use communication,
generating experiences that can mislead the training of communicating critics. Thus, using decentralized
policies for the learning of communicating critics can be problematic. To resolve the issue, we further propose
a KL divergence term to regularize policies for enhancing the learning of critics. The message-dependent
baseline technique and the KL divergence term jointly form our modular techniques, which will be integrated
into existing communication methods under the DCCDA setting.

We introduce a novel message-dependent baseline bi(hi, m−i) to achieve the minimal variance with the
presence of communication. For the learning of critics, we use Q-function Qi(hi, ai, m−i) to describe the
samples of the cumulative discounted return of agent i with communication, where message m−i can be either
noisy or noise-free. We assume that Qi(hi, ai, m−i) can converge to the true on-policy values Qπ

i (hi, ai, m−i).
Based on the definitions, we write out DCCDA policy gradients with the message-dependent baseline (denoted
as DCCDA-OB) as follows:

gi
DCCDA−OB = Eh,a,m[(Qi(hi, ai, m−i)− bi(hi, m−i))∇θi log πi(ai|hi, θi)] (1)

where actions are sampled from decentralized policies πi(·|hi) in practice. We then use ĝi
DCCDA−OB

to denote the (single-sample) estimate of gi
DCCDA−OB, i.e., ĝi

DCCDA−OB = (Qi(hi, ai, m−i) −
bi(hi, m−i))∇θi

log πi(ai|hi, θi). We seek the optimal message-dependent baseline b∗
i (hi, m−i) to minimize

the variance V ar(ĝi
DCCDA−OB) of the policy gradient estimate ĝi

DCCDA−OB. Therefore, we come to the
following theorem:
Theorem 3. The optimal message-dependent baseline for DCCDA-OB gradient estimator is:

b∗
i (hi, m−i) = Eai

[Qi(hi, ai, m−i)S]
Eai [S] (2)

where S = ∇θi log πi(ai|hi, θi)T∇θi log πi(ai|hi, θi).
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Proof Sketch (For the full proof see Appendix C.1). The key idea is to determine an optimal baseline to
minimize the variance of V ar(gi

DCCDA−OB) by analyzing the derivatives of the variance w.r.t. the baseline.
In Equation 2, S is the inner product of the gradient ∇θi log πi(ai|hi, θi), indicating the magnitude of the
gradient vector.

The resulting formula b∗
i (hi, m−i) aligns with previous works on baseline techniques considering states and

actions (Kuba et al., 2021; Wu et al., 2018), while we incorporate partially observable information (histories)
and communication (messages) into the Q-function. Based on Theorem 3, we have:
Corollary 1. The variance of DCCDA policy gradients is reduced with the optimal message-dependent
baseline: V ar(ĝi

DCCDA−OB) ≤ V ar(ĝi
DCCDA).

Proof Sketch (full proof in Appendix C.2). The key idea is to integrate the optimal baseline b∗
i (hi, m−i)

into the variance V ar(ĝi
DCCDA−OB), which ends with V ar(ĝi

DCCDA) minus a non-negative term. Therefore,
the variance with the baseline is less than or equal to the variance without the baseline.

Corollary 1 is formulated with respect to idealistic communication setting, i.e., V ar(ĝi
DCCDA−OB) ≤

V ar(ĝi
DCCDA), but it holds also for non-idealistic communication setting, i.e., V ar(ĝi

DCCDA−OB) ≤
V ar(ĝi

DCCDA−noise), by replacing messages with the noisy version m−i =< h−i, a−i, ϵi > and following
the same derivations.

The optimal message-dependent baseline we propose relies on communicating critics to generate baseline
values. Improving the learning of communicating critics can potentially lead to more accurate baseline
estimates. To facilitate this, we propose to enhance the consistency between the critic Qi(hi, ai, m−i), which
leverages communication during training, and the actor πi(·|hi, θi), which excludes communication during
execution. Specifically, we align the execution policy πi(·|hi, θi) with the policy induced by the critic’s
Q-values. Since only the policy πi(·|hi, θi) is available in implementations, we estimate the policy induced by
the critic using the Boltzmann softmax distribution of local Q-values (Cesa-Bianchi et al., 2017). This results
in the following KL divergence term to regularize πi(·|hi, θi) for receiver agent i:

LKL(θi) = −DKL(πi(·|hi, θi)||SoftMax( 1
α

Qi(hi, ·, m−i)) (3)

where α is a temperature parameter and the KL divergence term LKL(θi) minimizes the KL divergence
between the execution policy πi(·|hi, θi) and the policy suggested by the critics (which we desire to achieve
but not modeled during execution). A higher temperature results in a more uniform policy distribution
regarding the Q-values, while a lower temperature results in a more greedy policy distribution regarding the
Q-values. The KL divergence term penalizes policy πi(·|hi, θi) when it assigns a high probability to actions
that the estimated policy with communication assigns a low probability to, helping to align decentralized
policies with the desired behavior.

The optimal message-dependent baseline (OB) and the KL divergence term (KL) jointly constitute our
proposed techniques regarding the variance reduction in policy gradients and the learning of critics. The final
gradient for agent i is:

gi
DCCDA−OB−KL = gi

DCCDA−OB + β∇θiLKL(θi) (4)

where β is the scaling factor. gi
DCCDA−OB−KL is used to update the policy parameter θi for each agent. In

practice, the baseline (Equation 2) and the KL term (Equation 3) are computed using samples of experience
(i.e., mini-batches from the experience buffer). Concretely, we store the observation-action-message-reward
tuples together with Q-values and policy distribution for each agent in the buffer. Then, we compute the
inner product of the policy gradient (S) based on an analytical form of the softmax policy (Kuba et al.,
2021) and sampled Q-values. Moreover, we estimate the KL divergence through Q-functions and policies
with sampled observation-action-message tuples. The algorithmic procedures and the implementations of the
proposed baseline and regularization techniques are in Appendix D.3. We also discuss how the learning of
agents affects the estimations of KL divergence and the baseline values in Appendix D.3.

Schematic Diagram of Integrating OB and KL. To illustrate how our proposed OB and KL techniques
integrate with DCCDA methods, we present a schematic diagram that includes actors, critics, communication
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modules, a communication channel, and training objectives in Figure 4 in Appendix D.1. In the diagram, the
actor, communication (comm), and critic modules are neural networks (e.g., MLPs or RNNs), determined by
DCCDA methods. Each agent i decides its action ai based on its individual history hi. Then, each agent
communicates messages mi sampled from fmsg(mi|hi, ai) (see details in Section 3.2). In the experiments, we
implement fmsg as a multilayer neural network with a recurrent structure, which outputs a range of values
to be used as messages. Based on received messages mrec

i , agents estimate their Q-values Qi(hi, ai, m−i).
Different DCCDA methods may adopt different communication strategies for transmitting messages between
sender and receiver agents. In the case of broadcast communication, messages are exchanged through a
shared communication channel and aggregated into a message vector that excludes the sender’s own message,
denoted as m−i, for each receiver agent. In Figure 4, red arrows highlight the individual training process for
each agent’s actor, which incorporates our proposed OB and KL techniques (see Equation 4).

Model-agnostic techniques. Our proposed techniques focus on the learning of critics and actors. The
design of the communication process, including determining message content and how to exchange commu-
nicated messages, can be implemented and covered by any Comm-MADRL method under DCCDA. This
reflects the adaptability and flexibility of our techniques, making our techniques model-agnostic to existing
Comm-MADRL methods under DCCDA. In this paper, we show two cases of how to extend and adapt
communication methods using our proposed techniques, resulting in two extended algorithms (the details of
the algorithms can be found in Appendix D.2). In the next section, we demonstrate that the two methods
using our techniques significantly enhance learning performance and achieve a stable learning process.

5 Experiments

We evaluate our proposed techniques in two well-established and challenging multi-agent environments, SMAC
(Samvelyan et al., 2019) and Traffic Junction (Das et al., 2019) in MADRL.2 Both environments consist of
a varying number of cooperative agents with shared rewards and show difficulties in coordinating agents’
behaviors. We compare with the following methods:

• CTDE methods: COMA (Foerster et al., 2018), MAPPO (Yu et al., 2022), and MAT (Wen et al., 2022)
that serve as strong baselines in MADRL. These methods are based on actor-critics to align with our
setting DCCDA. Notably, MAPPO and MAT have achieved SOTA performance across several MARL
benchmarks (Yu et al., 2022; Wen et al., 2022). We compare CTDE methods with DCCDA methods that
incorporate our proposed techniques, demonstrating that variance can be reduced without compromising
learning performance, even when compared to critics with access to complete and full information.

• DCCDA methods: GAAC (Liu et al., 2020) and IPPO (Yu et al., 2022) extended with communication
(IPPO-Comm). As mentioned in related work, GAAC is the state-of-the-art method under the DCCDA
setting focusing on actor-critic methods. Essentially, GAAC employs a two-layer attention mechanism in
the critics to enable learnable communication graphs between agents. Due to the scarcity of communication
methods under DCCDA, we adapt the state-of-the-art actor-critic method under the DTDE setting, IPPO,
with a communication architecture, named IPPO-Comm. To demonstrate the adaptability and feasibility
of our proposed techniques, we adopt different communication and training strategies in IPPO-Comm
compared to GAAC. Specifically, IPPO-Comm does not allow gradient backpropagation; instead, it
uses Q-values to guide the training of communication modules. In contrast, GAAC enables gradient
backpropagation from the critics to the communication modules. Additionally, agents in IPPO-Comm
communicate discrete values (integers), whereas agents in GAAC communicate a vector of continuous
values. These design choices highlight the plug-in nature of our proposed techniques. Details regarding the
communication structure and the use of messages in different environments can be found in Appendix D.2.

• DCCDA methods with OB-KL: GAAC-OB-KL and IPPO-Comm-OB-KL. We extend DCCDA
methods, GAAC and IPPO-Comm, with our proposed techniques (OB-KL), forming GAAC-OB-KL
and IPPO-Comm-OB-KL. Notably, GAAC-OB-KL and IPPO-Comm-OB-KL not only demonstrate the
2The source code will be made publicly accessible upon the acceptance.
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Figure 2: Averaged win rate of all methods.

effectiveness of our techniques but also highlight the possibility of integrating these techniques with various
communication constraints and information structures (e.g., using communication graphs).

We illustrate the essential components of all methods and how they differ from each other in MADRL
setting, critics and policy regularization techniques in Appendix D.4. Notably, IPPO-Comm-OB-KL and
GAAC-OB-KL inherently differ other methods due to the proposed message-dependent baseline and the
regularization concerning communication. COMA, MAPPO, and MAT use baseline techniques based on
state-value or action-value functions that do not account for encoded messages. The communication method
GAAC does not employ a baseline technique. IPPO-Comm, on the other hand, follows the same training
strategies as IPPO, which includes a baseline based on state-value functions. For evaluation, all results are
reported as the median win rate with a 95% confidence interval. The statistical reports are provided in
Appendix D.5. Details regarding the choice of hyperparameters, such as learning rates, are presented in
Appendix D.6. Importantly, to enable fair comparison, we use the same training parameters for all methods.
The optimization strategies for all methods are either empirical or fine-tuned to ensure fair comparisons.
Additionally, our introduced parameters, the temperature α and the scaling factor β, are fine-tuned using a
grid search, with the parameter search results presented in Appendix D.7.

5.1 Evaluation Results

Starcraft Multi-Agent Challenge (SMAC). SMAC is a real-time strategy game serving as a benchmark
in the MADRL community. In SMAC, N units controlled by the learned algorithm try to kill all the enemies,
demanding proper cooperation strategies and micro-control of movement and attack. We choose several maps
where communication plays an important role in broadening agent’s view of the environment or coordinating
their strategies to effectively attack the enemies: 1o_10b_vs_1r, 3s5z_vs_3s6z, 5m_vs_6m, and 6h_vs_8z.
These maps feature a diverse range of agents, roles, and terrains, each presenting different communication
requirements. For example, map 1o_10b_vs_1r involves agents with distinct roles, where an overseer that
detects the enemy needs to communicate 10 baneling agents who act to kill the enemy. The variety and
richness of the tested maps (tasks) can provide a comprehensive evaluation of different aspects of MADRL.
In experiments, all methods are evaluated within 20M time steps. Each episode consists of a maximum of
100 time steps. For each seed, we compute the win rate over 32 evaluation episodes after each 25 training
episodes.

The results are presented in Figure 2. As we can see, IPPO-Comm-OB-KL achieves a significantly higher win
rate than all other methods on three out of four maps. In map 1o_10b_vs_1r, where agents with different
roles need to coordinate, the CTDE method MAT outperforms other methods. This is likely because MAT
utilizes a transformer to effectively process agents’ observations and generate optimal action sequences, while
IPPO-based methods such as IPPO, MAPPO, IPPO-Comm, and IPPO-Comm-OB-KL do not leverage such
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a structure. Meanwhile, in map 3s5z_vs_3s6z, the CTDE method MAPPO outperforms other methods up
to approximately 15 million steps but is ultimately surpassed by IPPO-Comm-OB-KL. In the remaining
maps, IPPO-Comm-OB-KL surpasses all other methods. These results indicate that IPPO-Comm-OB-KL is
able to leverage the computational efficiency of decentralized critics to gain an advantage over the CTDE
method MAPPO. Furthermore, the performance of DCCDA methods incorporating our proposed techniques
depends on the underlying algorithm. Among IPPO-based methods, including both IPPO and MAPPO,
IPPO-Comm-OB-KL consistently achieves the highest win rate. Overall, IPPO-Comm-OB-KL and GAAC-
OB-KL achieve more stable and effective learning compared to the versions without our proposed techniques,
namely IPPO-Comm and GAAC.

Traffic Junction. Traffic Junction is a popular benchmark used to test communication ability, where many
cars move along two-way roads with one or more road junctions following predefined routes. We test on the
medium and hard maps. We evaluate the success rate within 4M time steps. Each episode consists of a
maximum of 40 time steps in the medium map and 80 time steps in the hard map. For each 25 training
episodes, we compute the win rate over 32 evaluation episodes. We regard an episode as successful if no
collision happens during this episode. The results are shown in Figure 2. GAAC-OB-KL achieves a higher
win rate compared to all the other methods. IPPO-Comm-OB-KL has a similar win rate as MAT in the
medium map while surpassing other methods in the hard map.

5.2 The Analysis of Variance in Policy Gradients

We analyze whether the proposed techniques can reduce the variance in gradient updates of policies. To
show the magnitude of the gradients under different methods, we use the norm of the policy gradient vector,
following the work of Kuba et al. (2021). Then, we show the standard deviation of gradient norms across
8 seeds in Table 1. The lower values the better. As we can see, CTDE methods (COMA, MAPPO, and
MAT) have a high variance of gradient norms in most maps. The variance of DCCDA methods without our
proposed techniques (IPPO-Comm and GAAC) depends on the underlying optimization strategies. In our
implementation, we utilize the same optimization strategy for IPPO-Comm and GAAC as MAPPO to enhance
on-policy learning performance, while the variance of IPPO-Comm and GAAC is higher than MAPPO in
most maps. Nevertheless, IPPO-Comm-OB-KL and GAAC-OB-KL decrease the variance of gradient norms
in all maps compared to IPPO-Comm and GAAC. Compared to CTDE methods, IPPO-Comm-OB-KL
achieves a much lower variance in gradient norms across all maps, and GAAC-OB-KL shows lower variance
in 5 out of 6 maps. Specifically, in map 3s5z_vs_3s6z, GAAC-OB-KL has a slightly higher variance than
MAPPO, which may stem from the higher variance of GAAC (compared to MAPPO). The comparison shows
that the amount of variance reduction depends on the underlying communication methods. In most scenarios,
IPPO-Comm-OB-KL and GAAC-OB-KL achieve significantly lower policy gradient variance compared to
various CTDE methods. This gives IPPO-Comm-OB-KL and GAAC-OB-KL an advantage over CTDE
methods in stabilizing the learning process and further enhancing learning performance. We also plot the
changes of variance in gradient norms across training steps in Appendix D.7, where IPPO-Comm-OB-KL and
GAAC-OB-KL consistently demonstrate low variance in gradients over time steps. The analysis of gradient
norms shows that our proposed techniques can lead to not only performance improvements but also less
variance in policy gradients.

5.3 Ablation Studies

We further conduct experiments to investigate how the proposed techniques affect learning performance.
We ablate the KL divergence term and the baseline (OB) from the full version of IPPO-Comm-OB-KL and
GAAC-OB-KL and report the results based on the same settings in SMAC and Traffic Junction. As shown
in Figure 3, IPPO-Comm-OB-KL surpasses IPPO-Comm-OB (without the KL term) and IPPO-Comm-KL
(without the baseline) in all maps, which confirms the advantage of jointly applying the baseline and policy
regularization to IPPO-Comm. On the other hand, GAAC-OB-KL outperforms GAAC-OB and GAAC-KL
in all maps except for map 6h_vs_8z, where GAAC-OB has a higher win rate than GAAC-OB-KL. In this
map, agents may not be able to correctly estimate the policy with communication based on the learned
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Figure 3: Averaged win rate when ablating OB and KL.

Table 1: The standard deviation of gradient norms, provided on a scale of 0.01. We mark the best (lowest) value in
each column.

1o10bvs1r 3s5zvs3s6z 5mvs6m 6hvs8z medium hard

COMA 6.84 3.5 0.92 3.11 257.66 >1000

MAPPO 0.55 0.54 2.4 1.81 0.79 0.3

MAT 4.47 5.24 4.08 20.14 10.12 14.18

IPPO-Comm 0.57 0.82 2.14 1.57 0.5 0.43

IPPO-Comm-OB-KL 0.39 0.24 0.46 0.9 0.01 0.01

GAAC 1.76 1.09 0.64 6.28 1.11 0.67

GAAC-OB-KL 0.49 0.81 0.6 0.4 0.04 <0.01

Q-values, leading to significant drops using the KL divergence term. In all the other maps, removing any one
of OB and KL results in a decrease in the performance of IPPO-Comm-OB-KL and GAAC-OB-KL.

6 Conclusions

In this paper, we investigate the variance of policy gradients caused by communication in decentralized
multi-agent deep reinforcement learning. Specifically, we focus on the Decentralized Communicating Critics
and Decentralized Actors (DCCDA) setting, where communication is allowed only among critics, while actors
do not communicate during training and execution. By variance analysis, we prove that DCCDA policy
gradients have a higher or equal variance than the policy gradients under CTDE without communication.
We further propose a message-dependent baseline technique for variance reduction in policy gradients, and a
regularization technique to improve the learning of critics with experience generated by decentralized policies.
We theoretically prove that the optimal message-dependent baseline can reduce the variance in DCCDA
policy gradients. The experiments on several tasks show that our proposed techniques achieve not only
a higher learning performance but also reduced variance in policy gradients. In the future, we would like
to investigate the theoretical variance analysis and the techniques under various communication scenarios.
Moreover, we will consider how quantization or bandwidth limitations on continuous message values, as well
as the use of adaptive baselines (Schulman et al. (2016)), affect the variance of policy gradients.
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Appendix

We list important symbols and definitions used in the following deviations,

• ht = {h1
t , ..., hN

t }: the joint histories of N agents at time step t, which include all previous observations,
actions, and the current observation till time step t. We use H denote all possible values of ht, i.e.,
ht ∈H. We use h−i

t to denote the other agents’ histories and therefore: ht = {hi
t, h−i

t }.

• at = {a1
t , ..., aN

t }: the joint actions of N agents at time step t, generated by policies. We use a−i
t to

denote the other agents’ actions and therefore: at = {ai
t, a−i

t }.

• ot+1 = {o1
t+1, ..., oN

t+1}: the joint new observations of N agents (at time step t + 1). We use o−i
t to

denote the other agents’ new observations and therefore: ot = {oi
t, o−i

t }.

• ht+1 = {ht, at, ot+1} is the next joint history of all agents. We further use hao to denote
{ht, at, ot+1}.

• mt = {m1
t ..., mN

t }: the joint (sending) messages of N agents at time step t. During the
implementation, each message is generated from a probabilistic message function fmsg condi-
tioned on the sender agent’s history and action with parameters: mj ∼ fmsg(mj |hj , aj), where
j ∈ {1, ..., i− 1, i + 1, ..., N}. With broadcasting communication, the received message of each agent i
is denoted by m−i = {m1

t ..., mi−1
t , mi+1

t , mN
t }, i.e., the set of messages received from all other agents.

• π(at|ht): the centralized and joint policies of agents at time step t, considering the joint histories ht

of all agents.

• πi(ai
t|hi

t): the decentralized policy without communication of each agent i at time step t, considering
only the individual history hi

t.

• πi(ai
t|hi

t, m−i
t ): the decentralized policy with communication of each agent i at time step t, considering

the individual history hi
t and received messages m−i

t .

• ϵi is the noise associated to agent i, which corrupts received messages from other agents. We define
ϵi ∈ E , where E is the set of all possible noise values, i.e., integers. Each value of noise represents a
specific type of error. The noise term for each agent is sampled from a distribution, i.e., ϵi ∼ p(ϵi),
where p(ϵi) denotes the probability distribution over ϵi ∈ E . We assume that a noise term will be
sampled at every time step and denote as ϵi

t with probability p(ϵi
t).
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Note that we omit the time step of histories, actions, observations, messages, and policies in the following
deviations for notation simplification. The notation follows conventions in RL and MARL (Haarnoja et al.,
2018; Lyu et al., 2023).

A Proofs of the Theoretical Results in Idealistic Communication Setting

We first consider an idealistic communication setting which can simplify complex distributions in the following
theoretical analysis. Specifically, we have the following assumption:

Assumption 1. In idealistic communication setting, each received message correctly represents the sender’s
local information, i.e., histories and actions.

The ideal communication assumption implies the existence of a perfect message decoder from the receiver’s
perspective, capable of reconstructing the sender agents’ information from the received messages. Therefore,
communication induces complete and sound information from all agents, which can be used to relate
communicating critics and centralized critics.

Under the idealistic communication assumption, we come to the following lemma:

Lemma 1. The on-policy centralized critic equals to the expectation of on-policy decentralized communicating
critics in idealistic communication setting: Qπ(h, a) = Em−i|h,a[Qπ

i (hi, ai, m−i)]

Proof of Lemma 1. To prove the lemma, we first write the centralized critics and decentralized communicating
critics based on the Bellman equations, and then investigate their relation. Followed by Lyu et al. (2023), the
centralized Q-function (critic) under the Bellman equality is defined as follows3:

Qπ(h, a) = R(h, a) + γEo|h,a[
∑
a′

π(a′|hao)Qπ(hao, a′)] (5)

where R(h, a) .= Es|h,a[R(s, a)] is the joint history reward function and s ∼ p(s|h, a) is how agents infer the
state distribution based on current information. Qπ(h, a) is the expected long-term performance of the team
of agents when each agent (with policy πi) has observed the individual history hi and has opted to perform a
first action ai.

Similarly, we define a decentralized communicating Q-function (critic) following the Bellman equality as
follows:

Qπ
i (hi, ai, m−i) = Ri(hi, ai, m−i) + γEoi,m′

−i
|hi,ai,m−i

[
∑
a′

i

πi(a′
i|haoi, m′

−i)Qπ
i (haoi, a′

i, m′
−i)] (6)

where Ri(hi, ai, m−i)
.= Es|hi,ai,m−i

[R(s, (ai, a−i))] for a−i from the same joint action. Ri(hi, ai, m−i) is the
individual reward function with communication when observing individual history hi, action ai, and received
messages m−i when other agents opt for action a−i. In the equation, m′

−i is the next received messages. The
individual reward function is defined to consider all possible states under history information. Given the
same joint action considered at the current time step, we derive the relation between the joint history reward
function and the individual reward function with communication as follows:

3We use Q-functions instead of critics when involving the Bellman equations.
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R(h, a) = Es|h,a[R(s, a)] (7a)

=
∑

s

p(s|h, a)R(s, a) (7b)

=
∑

s,m−i

p(s, m−i|h, a)R(s, a) (7c)

=
∑
m−i

p(m−i|h, a)
∑

s

p(s|m−i, h, a)R(s, a) (7d)

imp.=
∑
m−i

p(m−i|h, a)
∑

s

p(s|m−i, hi, ai)R(s, a) (7e)

def.=
∑
m−i

p(m−i|h, a)Ri(hi, ai, m−i) (7f)

= Em−i|h,a[Ri(hi, ai, m−i)] (7g)

The line 7c is due to the marginalized expectation w.r.t. messages. In line 7d, as received messages can
correctly represent sender agents’ history and actions (Assumption 1), s is conditionally independent of other
agents’ information h−i and a−i given received messages m−i, and therefore: p(s|m−i, h, a) = p(s|m−i, hi, ai).
The simplification indicates that each receiver agent i can infer the distribution of the current states (s) based
on its current information, i.e., individual history (hi), action (ai), and received message (m−i). In line 7f,
we use the definition of individual reward function with communication in Equation 6. As a result, Equation
7 shows that the joint history reward function is equivalent to the individual reward function by summing up
all possible messages when agents opt for the same joint action.

We then analyze how messages affect future rewards in the Bellman equations, considering the stochastic
effect of messages in future time steps. In the following equation, we derive the relation between Q-functions
for the next time step. We substitute the Q-function Em′

−i
|hao,a′ [Qπ

i (haoi, a′
i, m′

−i)] (at the next time step)
into the second term of Equation 5 and obtain:
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γEo|h,a[
∑
a′

π(a′|hao)Em′
−i

|hao,a′ [Qπ
i (haoi, a′

i, m′
−i)]] (8a)

= γEo|h,a[
∑
a′

π(a′|hao)
∑
m′

−i

p(m′
−i|hao, a′)Qπ

i (haoi, a′
i, m′

−i)] (8b)

= γ
∑

o

p(o|h, a)
∑
a′

π(a′|hao)
∑
m′

−i

p(m′
−i|hao, a′)Qπ

i (haoi, a′
i, m′

−i) (8c)

= γ
∑

o,a′,m′
−i

p(o|h, a)π(a′|hao)p(m′
−i|hao, a′)Qπ

i (haoi, a′
i, m′

−i) (8d)

= γ
∑

o,a′,m′
−i

�����p(h, o, a)
p(h, a)

(((((((
p(a′, h, a, o))
�����p(h, a, o)

p(m′
−i, h, a, o, a′)

((((((p(h, a, o, a′) Qπ
i (haoi, a′

i, m′
−i) (8e)

= γ
∑

o,a′,m′
−i

p(m′
−i, h, a, o, a′)

p(h, a) Qπ
i (haoi, a′

i, m′
−i) (8f)

= γ
∑

o,a′,m′
−i

p(o, a′, m′
−i|h, a)Qπ

i (haoi, a′
i, m′

−i) (8g)

= γ
∑

oi,a′
i
,m′

−i

p(oi, a′
i, m′

−i|h, a)Qπ
i (haoi, a′

i, m′
−i) (8h)

= γ
∑

m−i,oi,a′
i
,m′

−i

p(m−i, oi, a′
i, m′

−i|h, a)Qπ
i (haoi, a′

i, m′
−i) (8i)

= γ
∑

m−i,oi,a′
i
,m′

−i

p(m−i|h, a)p(oi, a′
i, m′

−i|h, a, m−i)Qπ
i (haoi, a′

i, m′
−i) (8j)

= γ
∑

m−i,oi,a′
i
,m′

−i

p(m−i|h, a)p(oi, m′
−i|h, a, m−i)p(a′

i|h, a, m−i, oi, m′
−i)Qπ

i (haoi, a′
i, m′

−i) (8k)

imp.= γ
∑

m−i,oi,a′
i
,m′

−i

p(m−i|h, a)p(oi, m′
−i|hi, ai, m−i)πi(a′

i|hi, ai, oi, m′
−i)Qπ

i (haoi, a′
i, m′

−i) (8l)

= γ
∑
m−i

p(m−i|h, a)
∑

oi,m′
−i

p(oi, m′
−i|hi, ai, m−i)

∑
a′

i

πi(a′
i|hi, ai, oi, m′

−i)Qπ
i (haoi, a′

i, m′
−i) (8m)

= γEm−i|h,a[Eoi,m′
−i

|hi,ai,m−i
[
∑
a′

i

πi(a′
i|haoi, m′

−i)Qπ
i (haoi, a′

i, m′
−i)]] (8n)

In line 8g, we sum up the other agents’ next observations (o−i) and next actions (a′
−i) since they do not

determine agent i’ Q-values (due to marginalization). In line 8i, adding a new variable m−i does not change
the expected quantity due to marginalized distribution, where all possible messages are considered in the
enumeration. From line 8k to line 8l, we use Assumption 1 to simplify the distribution p(oi, m′

−i|h, a, m−i) to
p(oi, m′

−i|m−i, hi, ai): the currently received message (m−i) has included other agents’ current information
(i.e., h−i, a−i), and agent i can infer the next observations and the next received messages based on its current
information. We further simplify the distribution p(a′

i|h, a, m−i, oi, m′
−i) to p(a′

i|hi, ai, m−i, oi, m′
−i), because

the next received message m′
−i has already included sender agents’ (previous) histories h−i and a−i (due to

Assumption 1). Since messages are generated to include all historical information, we assume that each agent’s
policy depends only on current messages and can ignore history information (e.g., previous messages m−i)
due to Markovian property. This simplifies the distribution p(a′

i|hi, ai, oi, m−i, m′
−i) to p(a′

i|hi, ai, oi, m′
−i).

The distribution p(a′
i|hi, ai, oi, m′

−i) indicates that receiver agent i can decide its next action (a′
i) based on

its next history (hi, ai, oi) and the next received message (m′
−i). We further denote p(a′

i|hi, ai, oi, m′
−i) as

πi(a′
i|hi, ai, oi, m′

−i) for notation consistency.

By bringing Equations 7 and 8 together, we achieve the following equality:
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R(h, a) + γEo|h,a[
∑
a′

π(a′|hao)Em′
−i

|hao,a′ [Qπ
i (haoi, a′

i, m′
−i)]]

eq.7&8= Em−i|h,a[Ri(hi, ai, m−i)] + γEm−i|h,a[Eoi,m′
−i

|hi,ai,m−i
[
∑
a′

πi(a′|haoi, m′
−i)Qπ

i (haoi, a′, m′
−i)]]

def.= Em−i|h,a[Ri(hi, ai, m−i) + γEoi,m′
−i

|hi,ai,m−i
[
∑
a′

πi(a′|haoi, m′
−i)Qπ

i (haoi, a′, m′
−i)]]

= Em−i|h,a[Qπ
i (hi, ai, m−i)]

(9)

where the final equality follows Equation 6. Note that Em′
−i

|hao,a′ [Qπ
i (haoi, a′

i, m′
−i)] and

Em−i|h,a[Qπ
i (hi, ai, m−i)] are the same Q-function evaluated at different time steps. Based on Equation 9,

we have,

Em−i|h,a[Qπ
i (hi, ai, m−i)] = R(h, a) + γEo|h,a[

∑
a′

π(a′|hao)Em′
−i

|hao,a′ [Qπ
i (haoi, a′

i, m′
−i)]] (10)

Essentially, after substituting the decentralized communicating Q-function (Em′
−i

|hao,a′ [Qπ
i (haoi, a′

i, m′
−i)])

into the left side of the centralized Q-function under the Bellman equation (Equation 5), we still get back
the decentralized communicating Q-function (Em−i|h,a[Qπ

i (hi, ai, m−i)]). Followed by Lyu et al. (2023), the
centralized Q-function Qπ(h, a) is the unique fixed point of the Bellman equation defined in Equation 5 (due
to the contraction mapping of the Bellman operator). Since Em−i|h,a[Qπ

i (hi, ai, m−i)] appears to be also the
solution of the same Bellman equation (Equation 5), we have Qπ(h, a) = Em−i|h,a[Qπ

i (hi, ai, m−i)], which
completes the proof.

A.1 Proof of Theorem 1

We have the following theorem:
Theorem 1. The DCCDA sample gradient has a variance greater or equal than that of the CTDE sample
gradient in idealistic communication setting: V ar(ĝi

DCCDA) ≥ V ar(ĝi
CT DE).

Proof of Theorem 1. We first check the relation between the two expected gradients gi
DCCDA and gi

CT DE , which
can greatly simplify the later variance analysis. Based on Lemma 1, as Qπ(h, a) = Em−i|h,a[Qπ

i (hi, ai, m−i)],
we have,

gi
DCCDA = Eh,a,m[Qπ

i (hi, ai, m−i)∇θi
log πi(ai|hi, θi)] (11a)

= Eh,a[Em|h,a[Qπ
i (hi, ai, m−i)∇θi

log πi(ai|hi, θi)] (11b)
= Eh,a[Em−i|h,a[Qπ

i (hi, ai, m−i)∇θi
log πi(ai|hi, θi)]] (11c)

= Eh,a[Em−i|h,a[Qπ
i (hi, ai, m−i)]∇θi

log πi(ai|hi, θi)] (11d)
lem.1= Eh,a[Qπ(h, a)∇θi

log πi(ai|hi, θi)] (11e)
= gi

CT DE (11f)

where line 11c is due to the quantity inside the expectation does not depend on agent i’s message mi.

Based on Equation 11, we come to the following proof of Theorem 1. Note that ĝi
CT DE =

Qπ(h, a)∇θi log πi(ai|hi, θi) and ĝi
DCCDA = Qπ

i (hi, ai, m−i)∇θi log πi(ai|hi, θi). Regarding the variance
analysis of a vector of gradients, it necessarily involves the covariance matrix, where the diagonal elements
denote the variance of each gradient component. The covariance matrix is constructed using the outer
product of the gradient vector. To simplify the analysis, we focus on the total variance of the policy gradients,
which measures the overall variability across all dimensions. The total variance is given by the trace of the
covariance matrix, that is the sum of its diagonal elements, using the squared norm of the gradient vector.
We denote S = ∇θi log πi(ai|hi, θi)T∇θi log πi(ai|hi, θi), which is the inner product (squared norm) of the
vector ∇θi log πi(ai|hi, θi). Then, we come to the following variance analysis:
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V ar(ĝi
DCCDA)− V ar(ĝi

CT DE) (12a)
def.=

(
Eh,a,m[(ĝi

DCCDA)2]−
(
Eh,a,m[ĝi

DCCDA]
)2)
−

(
Eh,a[(ĝi

CT DE)2]−
(
Eh,a[ĝi

CT DE ]
)2)

(12b)

=
(
Eh,a,m[(ĝi

DCCDA)2]− Eh,a[(ĝi
CT DE)2]

)
−

((
Eh,a,m[ĝi

DCCDA]
)2 −

(
Eh,a[ĝi

CT DE ]
)2)

(12c)
eq.11=

(
Eh,a,m[(ĝi

DCCDA)2]− Eh,a[(ĝi
CT DE)2]

)
−

(
(gi

DCCDA)2 − (gi
CT DE)2)︸ ︷︷ ︸

=0

(12d)

= Eh,a,m[(ĝi
DCCDA)2]− Eh,a[(ĝi

CT DE)2] (12e)
def.= Eh,a,m[(Qπ

i (hi, ai, m−i)∇θi log πi(ai|hi, θi))2]− Eh,a[(Qπ(h, a)∇θi log πi(ai|hi, θi))2] (12f)
def.= Eh,a,m[Qπ

i (hi, ai, m−i)2S]− Eh,a[Qπ(h, a)2S] (12g)
= Eh,a[Em|h,a[Qπ

i (hi, ai, m−i)2S]]− Eh,a[Qπ(h, a)2S] (12h)
= Eh,a[Em−i|h,a[Qπ

i (hi, ai, m−i)2S]]− Eh,a[Qπ(h, a)2S] (12i)
= Eh,a[

(
Em−i|h,a[Qπ

i (hi, ai, m−i)2]−Qπ(h, a)2)
S] (12j)

= Eh,a,m[
(
Qπ

i (hi, ai, m−i)2 −Qπ(h, a)2)
S] (12k)

lem.1= Eh,a[
(
Em−i|h,a[Qπ

i (hi, ai, m−i)2]− (Em−i|h,a[Qπ
i (hi, ai, m−i)])2)︸ ︷︷ ︸

u

S] (12l)

≥ 0 (12m)

where line 12b follows the definition of variance. Line 12b follows the definitions that gi
DCCDA = E[ĝi

DCCDA]
and gi

CT DE = E[ĝi
CT DE ]. Moreover, due to Equation 11, we have gi

DCCDA = gi
CT DE and then (gi

DCCDA)2 −
(gi

CT DE)2 = 0 in line 12d. In line 12f, we replace gi
DCCDA and gi

CT DE with the defined formula and it shows
a square of the gradient ∇θi log πi(ai|hi, θi). We then use S to simplify the notation. Line 12i is because the
quantity inside the expectation does not depend on agent i’s message mi. Line 12l is according to Lemma 1.
The final inequality in line 12m follows because u ≥ 0 by Jensen’s inequality: E[X2] ≥ (E[X])2, and S is the
inner product of a vector itself and therefore non-negative. Therefore, the DCCDA sample gradient has a
variance greater or equal than that of the CTDE sample gradient, i.e., V ar(ĝi

DCCDA) ≥ V ar(ĝi
CT DE), which

completes the proof.

B Proofs of the Theoretical Results in Non-idealistic Communication Setting

We further consider a non-idealistic communication setting where messages are corrupted with a noisy term.
The noisy term could come from the imperfection of decoders, e.g., due to the use of neural networks. Therefore,
from receiver agent i’s perspective, received message mi

j from sender agent j is dedicated to incorporate a
noisy term ϵi ∈ E when sender agent j’s sends a message: mi

j =< mj , ϵi >, where mj ∼ fmsg(mj |hj , aj) is
a message broadcast by sender agent j and ϵi is the noise associated to agent i. In order to simplify the
analysis, we assume there exists a decoder that could decode hj and aj from message mj and therefore we
could omit fj , i.e., mi

j =< hj , aj , ϵi >, while messages can still be imperfect and remain noisy. Then, the
message used by receiver agent i is denoted as m−i =< mi

1, ..., mi
i−1, mi

i+1, ..., mi
N >=< h−i, a−i, ϵi >

Based on the above non-idealistic communication setting, the communicating critic of receiver agent i is
denoted as Qπ

i (hi, ai, m−i), and we have: Qπ
i (hi, ai, m−i) = Qπ

i (hi, ai, < h−i, a−i, ϵi >) = Qπ
i (h, a, ϵi), where

noise in communication is lifted to Q-values, leading to individual but joint critics with additive noise.

We further investigate how noise affects the value estimation in critics and also the relation between individual
but joint critics with additive noise Qπ

i (h, a, ϵi) and individual but joint critics without noise Qπ
i (h, a), which

is essential for our variance analysis. Due to the noise in communication, rewards become noisy as well.
Given history h ∈H, action a ∈ A, and noise term ϵi ∈ E , we define individual but joint critics with noise
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at time step t as:

Qπ
i,t(h, a, ϵi)

= Est+k,at+k,ϵi
t+k

[
T∑

k=0
γkRi(st+k, at+k, ϵi

t+k)|ht = h, at = a, ϵi
t = ϵi]

=
∑

st,st+1∈S
p(st, st+1|h, a)

(
Ri(st, a, ϵi) + γ

∑
at+1∈A,ht+1∈H

p(ht+1|st+1)π(at+1|ht+1)
∑
ϵi

t+1

p(ϵi
t+1)Qπ

i,t+1(ht+1, at+1, ϵi
t+1)

)
(13)

where p(st, st+1|ht, at) = p(st|ht, at)p(st+1|ht, at, st) represents the probabilities transiting from state st to
state st+1 under joint action a when observing history ht, p(ht+1|st+1) represents the probabilities of history
ht+1 under future state st+1, π(at+1|ht+1) represents the history-based policy, and Ri(st, at, ϵi

t) is the noisy
reward of agent i at time step t. In Equation 13, rewards considering noisy messages are accumulated when
observing history h, the first joint action to be a, and the first noise to be ϵi. Without noise, we define
individual but joint critics at time step t as:

Qπ
i,t(h, a)

= Est+k,at+k
[

T∑
k=0

γkRi(st+k, at+k, st+k+1)|ht = h, at = a]

=
∑

st,st+1∈S
p(st, st+1|h, a)

(
Ri(st, a) + γ

∑
at+1∈A,ht+1∈H

p(ht+1|st+1)π(at+1|ht+1)Qπ
i,t+1(ht+1, at+1)

) (14)

where Ri(st, at) is the true reward of agent i at time step t. Without noise, rewards in Qπ
i,t(h, a) are

accumulated when observing history h and the first joint action to be a. Due to shared rewards in the
Dec-POMDP setting, we have: Qπ

i,t(h, a) = Qπ
t (h, a) by convergence, where Qπ

t (h, a) is the centralized
Q-function at time step t.

Based on the individual but joint critics with and without noise, we can see that the noise affects the
estimation of Q-values when accumulating rewards. In single-agent reinforcement learning, Wang et al.
(2020a) shows that noisy rewards can be compensated by utilizing a surrogate reward function, leading to
unbiased value estimation. However, removing the effect of noise that we defined in value estimation may
lead to increased variance when summing up noisy rewards. Inspired by the surrogate rewards proposed
by Wang et al. (2020a), we prove that in multi-agent reinforcement learning scenarios, using a surrogate
reward function can also remove the effect of noise in value estimation (thereby become unbiased), while
at the cost of increased variance. In the following proof, we consider a binary case where rewards indicate
either success (r+) or failure (r−), while this can be generalized to rewards beyond binary (see Wang et al.
(2020a)), which employs a confusion matrix where each entry represents the probability of a true reward
being observed as a different value. In this non-binary reward setting, conducting a variance analysis requires
assuming the domain knowledge of how noise alters each reward. Note that due to the shared rewards in
the Dec-POMDP setting, agents have the same values of success or failure, i.e., r+ = r1

+ = r2
+ = ... = rN

+
and r− = r1

− = r2
− = ... = rN

− , where ri
+ and ri

− are rewards obtained by agent i for success and failure,
respectively. In the binary reward case, we further assume the noise can be categorized into two types: those
that alter a given reward and those that do not. For simplicity in the theoretical analysis, we also assume the
noise is discrete, allowing the use of summation over all possible noisy values. Then, noisy rewards can be
characterized by the noise rate parameter e, where we have:

e := p(Ri(st, at, ϵi
t) ̸= Ri(st, at))

where e defines the probability that noisy rewards are different from noise-free rewards under noise ϵi
t and

Ri(st, at) ∈ R := {r+, r−}. e implies that the probability of Ri(st, at, ϵi
t) ̸= Ri(st, at) can be affected by the

noise term ϵi
t. The noise term captures how communication under noisy conditions alters agents’ chances of

success or failure. With shared rewards, agents have the same values of e.

We determine the noisy reward Ri(st, at, ϵi
t) based on the noisy term as follows:
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Suppose the noise-free (true) reward indicates success (i.e., Ri(st, at) = r+) and there exists a value δϵ ∈ E , if
the noise term ϵi

t ≥ δϵ, then the noisy reward equals to the true reward and thus Ri(st, at, ϵi
t) = r+, otherwise

if the noise term ϵi
t < δϵ, the reward is considered to be erroneous and thus Ri(st, at, ϵi

t) = r−.

Let the set of noise terms ϵ+ = {ϵi
t ∈ E|ϵi

t ≥ δϵ} represents the cases that noisy rewards equal to true
rewards and ϵ− = {ϵi

t ∈ E|ϵi
t < δϵ} represents the cases that noisy rewards differ from true rewards. We have

ϵ+ ∪ ϵ− = E and ϵ+ ∩ ϵ− = ∅. Then we denote E = {ϵ+, ϵ−}. We determine e as:

e = p(Ri(st, at, ϵi
t) ̸= Ri(st, at)) = p(ϵ−)

Then we have,
1− e = p(Ri(st, at, ϵi

t) = Ri(st, at)) = p(ϵ+)
where ϵ+ ∈ E and ϵ− ∈ E.

In the following two lemmas, we show that the effect of noisy rewards can be removed upon the inspiration of
Wang et al. (2020a), leading to the equality between individual but joint Q-function (without noise) and a
defined surrogate Q-function (with noise). The equality between the two Q-functions significantly simplifies
the variance analysis in CTDE policy gradients and the noisy version of DCCDA policy gradients. However,
it still presents the issue of increased variance, as demonstrated later in Theorem 2.

We list the definition of important symbols used in the proof of Lemma 2 for better reading:

• ri ∈ {r+, r−} is the true reward of agent i where noise is not presented.

• ri
ϵ ∈ {r+, r−} is the noisy reward of agent i where noise is presented.

Wang et al. (2020a) propose a surrogate reward function (Equation 1 in the paper of Wang et al.) to help
remove the effect of noise in value estimation. Inspired by Wang et al., we define a surrogate reward function
R̂i(st, at, ri, ϵi

t) of agent i as a function of state st, actions at, the true reward ri and the noise term ϵi
t:

R̂i(st, at, ri, ϵi
t) :=


(1− e)r+ − e r−

1− 2e
, if(ri = r+ & ϵi

t ∈ ϵ+) or (ri = r− & ϵi
t ∈ ϵ−),

(1− e)r− − e r+

1− 2e
, if(ri = r+ & ϵi

t ∈ ϵ−) or (ri = r− & ϵi
t ∈ ϵ+).

(15)

where the true rewards and noise term determine noisy rewards, i.e., ri
ϵ = r+ is equivalent to (ri = r+ & ϵi

t ∈
ϵ+) or (ri = r− & ϵi

t ∈ ϵ−), and ri
ϵ = r− is equivalent to (ri = r+ & ϵi

t ∈ ϵ−) or (ri = r− & ϵi
t ∈ ϵ+).

Based on our defined surrogate reward function R̂i(st, at, ri, ϵi
t), we come to the following lemma:

Lemma 2. We set true reward ri = Ri(st, at), where ri ∈ {r+, r−}. For any value of ri, with noise term ϵi
t,

we have: Eϵi
t
[R̂i(st, at, ri, ϵi

t)] = Ri(st, at) in non-idealistic communication setting.

Proof of Lemma 2. In the following proof, we compute the expectation of surrogate rewards under associated
probabilities when the true reward is specified. We prove that under any value of the true reward ri =
Ri(st, at), the expectation of surrogate reward R̂i(st, at, ri, ϵi

t) equals to the true reward Ri(st, at).

When true reward ri = r+, based on the definition of the surrogate reward in Equation 15, the expected
values of surrogate rewards under noise will be:

Eϵi
t
[R̂i(st, at, ri = r+, ϵi

t)] = (1− e) · (1− e)r+ − e r−

1− 2e
+ e · (1− e)r− − e r+

1− 2e
(16a)

= (1− e)(1− e) r+ − e(1− e) r− + e(1− e)r− − e2r+

1− 2e
(16b)

= (1− 2e)r+

1− 2e
(16c)

= r+ (16d)
= ri = Ri(st, at) (16e)
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where the value in line 16a comes from the surrogate rewards multiplied with the probabilities p(ϵ+)
and p(ϵ−). When true reward ri = r−, it also verifies that Eϵi

t
[R̂i(st, at, ri = r−, ϵi

t)] = r−. So we have
Eϵi

t
[R̂i(st, at, ri, ϵi

t)] = Ri(st, at) for any value of ri, which completes the proof.

We list the definition of important symbols used in the proof of Lemma 3 and the following theorem for
better reading:

• R = {r+, r−} = {ri
n}n∈{+,−} is the set of true rewards of agent i where ri

+ represents success and
ri

− represents failure. Due to shared rewards, we have ri
+ = r+ and ri

− = r−. Note that we express
ri

t ∈ R for reward variable at time step t.

• R̂n = {r̂i
n,l}l∈{+,−} is the set of surrogate reward of agent i when true reward is ri

n. In the set
R̂n, r̂i

n,+ is the surrogate reward if noisy term ϵi
t ∈ ϵ+ and given true reward ri

n. And, r̂i
n,− is the

surrogate reward if noisy term ϵi
t ∈ ϵ− and given true reward ri

n.

Similar to Equation 13, we define a surrogate Q-function Q̂π
i (h, a, ϵi) at time step t as:

Q̂π
i,t(h, a, ϵi) = Est+k,at+k,ri

t+k
,ϵi

t+k
[

T∑
k=0

γkR̂i(st+k, at+k, ri
t+k, ϵi

t+k)|ht = h, at = a, ϵi
t = ϵi]

=
∑

st,st+1∈S

∑
ri∈R

p(st, st+1, ri|h, a)
(
R̂i(st, a, ri, ϵi)+

γ
∑

at+1∈A,ht+1∈H

p(ht+1|st+1)π(at+1|ht+1)
∑
ϵi

t+1

p(ϵi
t+1)Q̂π

i,t+1(ht+1, at+1, ϵi
t+1)

) (17)

where surrogate rewards are accumulated when observing history h, the first joint action to be a, and the
first noise to be ϵi.

According to Lemma 2, the surrogate rewards and true rewards are related at every time step. Based on this,
we would like to investigate how the accumulation of rewards in Q-functions relates to each other. Since
individual but joint Q-function equals to centralized Q-function with shared rewards, we have the following
lemma:
Lemma 3. Given Ri(st, at) = Eϵi

t
[R̂i(st, at, ri, ϵi

t)], the centralized Q-function equals to the expectation of
surrogate Q-function in non-idealistic communication setting: Qπ(h, a) = Eϵi [Q̂π

i (h, a, ϵi)].

Proof of Lemma 3. In the following proof, we first relate true rewards and surrogate rewards under transition
probabilities. Then we relate individual but joint Q-function and surrogate Q-function upon the summation
over true rewards and surrogate rewards per step, respectively. Finally we achieve the equality between the
centralized Q-function and the surrogate Q-function.

According to Lemma 2, for any true reward ri = ri
n, we have:

Eϵi
t
[R̂i(st, at, ri = ri

n, ϵi
t)] = p(ϵ+) · r̂i

n,+ + p(ϵ−) · r̂i
n,− =

∑
l∈{+,−}

p(ϵl)r̂i
n,l = ri

n (18)

We further use p(st, st+1, ri
n|ht, at) to represent the probabilities of a certain true reward ri

n when transiting
from state st to the next state st+1 under joint actions at given current history ht. The true rewards and
surrogate rewards for every time step t satisfy:∑

st,st+1∈S
p(st, st+1|ht, at)Ri(st, at) =

∑
st,st+1∈S

∑
n∈{+,−}

p(st, st+1, ri
n|ht, at)ri

n (19a)

eq.18=
∑

st,st+1∈S

∑
n∈{+,−}

p(st, st+1, ri
n|ht, at)

∑
l∈{+,−}

p(ϵl)r̂i
n,l (19b)

=
∑

st,st+1∈S

∑
ri∈R

p(st, st+1, ri|ht, at)
∑
ϵi

t∈E

p(ϵi
t)R̂i(st, at, ri, ϵi

t) (19c)
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where p(st, st+1|ht, at) is the transition probabilities giving current history ht and action at. Line 19a sums
over all possible values of true rewards multiplied by their probabilities. Line 19b is due to Equation 18. In
line 19c, we achieve the summation over surrogate rewards by replacing the index with reward variable: a)
the summation over index n is transformed into the summation over ri ∈ R; b) the summation over the set
E = {ϵl}l∈{+,−} is transformed into the summation over all possible ϵi

t as ϵ+ ∪ ϵ− = E .

Equation 19 implies that the true rewards and surrogate rewards under transitions per time step can be equal
in expectation, which can lead to the equality between individual but joint Q-function (accumulating true
rewards) and surrogate Q-function (accumulating surrogate rewards). In the following derivations, we first
prove that the equality hold at the last time step. Then we can achieve that the equality holds for every time
step by induction.

Base Step: At terminal time step T , we have:

Qπ
i,T (hT , aT ) =

∑
sT ∈S

p(sT , sterminal|hT , aT )Ri(sT , aT ) (20a)

eq.19=
∑

sT ∈S

∑
ri∈R

p(sT , sterminal, ri|hT , aT )
∑

ϵi
T

∈E

p(ϵi
T )R̂i(sT , aT , ri, ϵi

T ) (20b)

=
∑

ϵi
T

∈E

p(ϵi
T )

( ∑
sT ∈S

∑
ri∈R

p(sT , sterminal, ri|hT , aT )R̂i(sT , aT , ri, ϵi
T )

)
(20c)

eq.17=
∑

ϵi
T

∈E

p(ϵi
T )Q̂π

i,T (hT , aT , ϵi
T ) (20d)

where sterminal is the terminal state. Line 20a is due to the definition of Q-values in the last transitions
and we do not use the discounted term. Line 20b is due to Equation 19 by replacing true rewards with
the expectation of surrogate rewards. Line 20c holds since the summation over noisy term ϵi

T at line 20b is
factored out over the summation. The equation between lines 20c and 20d holds due to Equation 17. Note
we do not use the discounted term in 17 because T is the terminal step.

Induction step: We now assume that Qπ
i,t+1(ht+1, at+1) =

∑
ϵi

t+1∈E p(ϵi
t+1)Q̂π

i,t+1(ht+1, at+1, ϵi
t+1) holds

for time step t + 1 < T , and prove that this holds also for time step t, i.e., we prove that Qπ
i,t(ht, at) =∑

ϵi
t∈E p(ϵi

t)Q̂π
i,t(ht, at, ϵi

t).

Qπ
i,t(ht, at) (21a)

=
∑

st,st+1∈S
p(st, st+1|ht, at)

(
Ri(st, at) + γ

∑
at+1∈A,ht+1∈H

p(ht+1|st+1)π(at+1|ht+1) Qπ
i,t+1(ht+1, at+1)︸ ︷︷ ︸

ind.step
=

∑
ϵi

t+1∈E
p(ϵi

t+1)Q̂π
i,t+1(ht+1,at+1,ϵi

t+1)

)

(21b)
eq.19=

∑
st,st+1∈S

∑
ri∈R

p(st, st+1, ri|ht, at)
∑
ϵi

t∈E

p(ϵi
t)

(
R̂i(st, at, ri, ϵi

t)+ (21c)

γ
∑

at+1∈A,ht+1∈H

p(ht+1|st+1)π(at+1|ht+1)
∑

ϵi
t+1∈E

p(ϵi
t+1)Q̂π

i,t+1(ht+1, at+1, ϵi
t+1)

)
(21d)

=
∑
ϵi

t∈E

p(ϵi
t)

( ∑
st,st+1∈S

∑
ri∈R

p(st, st+1, ri|ht, at)
(
R̂i(st, at, ri, ϵi

t)+ (21e)

γ
∑

at+1∈A,ht+1∈H

p(ht+1|st+1)π(at+1|ht+1)
∑

ϵi
t+1∈E

p(ϵi
t+1)Q̂π

i,t+1(ht+1, at+1, ϵi
t+1)

))
(21f)

eq.17=
∑
ϵi

t∈E

p(ϵi
t)Q̂π

i,t(ht, at, ϵi
t) (21g)
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where derivation 21b is due to the definition of Qπ
i,t(ht, at). Moreover, in derivation 21b, we use the assumption

Qπ
i,t+1(ht+1, at+1) =

∑
ϵi

t+1∈E p(ϵi
t+1)Q̂π

i,t+1(ht+1, at+1, ϵi
t+1), leading to the discounted term in 21d. We also

use Equation 19 to replace true rewards with the expectation of surrogate rewards in derivation 21c. Derivations
21e-21f holds since the summation over noisy term ϵi

t at derivation 21c is factored out over the summation.
The equation between derivations 21e-21f and 21g holds due to Equation 17 (the surrogate Q-function).
Then, we achieve the equality Qπ

i,t(ht, at) =
∑

ϵi
t∈E p(ϵi

t)Q̂π
i,t(ht, at, ϵi

t). By induction, we conclude that
Qπ

i (h, a) =
∑

ϵi∈E p(ϵi)Q̂π
i (h, a, ϵi) hold for any time step (and we drop the time step). Due to shared rewards

and the definition of expectation we have Qπ
i (h, a) = Qπ(h, a) and

∑
ϵi∈E p(ϵi)Q̂π

i (h, a, ϵi) = Eϵi
[Q̂π

i (h, a, ϵi)].
Therefore, we complete the proof that Qπ(h, a) = Eϵi

[Q̂π
i (h, a, ϵi)].

B.1 Proof of Theorem 2

We use Q-functions Q̂π
i (h, a, ϵi) and Qπ(h, a) as critics for decentralized actors πi(ai|hi, θi). Then, we have

the following policy gradients:

gi
DCCDA−noise = Eh,a,ϵi

[Q̂π
i (h, a, ϵi)∇θi

log πi(ai|hi, θi)]

gi
CT DE = Eh,a[Qπ(h, a)∇θi

log πi(ai|hi, θi)]

where gi
DCCDA−noise is the noise version of DCCDA and the noise in communication is lifted to a surrogate

Q-function.

Based on gi
DCCDA−noise and gi

CT DE , we have the following theorem, which follows similar procedures as in
the proof of idealistic communication setting:

Theorem 2. The noisy version of DCCDA sample gradient has a variance greater or equal than that of the
CTDE sample gradient in non-idealistic communication setting: V ar(ĝi

DCCDA−noise) ≥ V ar(ĝi
CT DE).

Proof of Theorem 2. In the following proof, we first check the relation between the two expected gradients
gi

DCCDA−noise and gi
CT DE , which can greatly simplify the later variance analysis. Then we compare the

variance of gradients gi
DCCDA−noise and gi

CT DE .

Based on Lemma 3, as Qπ(h, a) = Eϵi
[Qπ

i (h, a, ϵi)]:

gi
DCCDA−noise = Eh,a,ϵi [Qπ

i (h, a, ϵi)∇θi log πi(ai|hi, θi)] (22a)
= Eh,a[Eϵi [Qπ

i (h, a, ϵi)∇θi log πi(ai|hi, θi)] (22b)
lem.3= Eh,a[Qπ(h, a)∇θi log πi(ai|hi, θi)] (22c)
= gi

CT DE (22d)

where line 22c is due to Lemma 3. Note that the noise term is not included in actors as actors do not
communicate.

Based on derivation 22a-22d, we come to the following proof of Theorem 2. Note that ĝi
CT DE is used

to denote Qπ(h, a)∇θi
log πi(ai|hi, θi) and ĝi

DCCDA−noise is used to denote Qπ
i (h, a, ϵi)∇θi

log πi(ai|hi, θi).
Similar to the variance analysis in Appendix A.1, in order to simplify the notation, we denote S =
∇θi log πi(ai|hi, θi)T∇θi log πi(ai|hi, θi), which is the inner product of ∇θi log πi(ai|hi, θi) (due to the square
of it):
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V ar(ĝi
DCCDA−noise)− V ar(ĝi

CT DE) (23a)
def.=

(
Eh,a,ϵi

[(ĝi
DCCDA−noise)2]−

(
Eh,a,ϵi [ĝi

DCCDA−noise]
)2)
−

(
Eh,a[(ĝi

CT DE)2]−
(
Eh,a[ĝi

CT DE ]
)2)

(23b)

=
(
Eh,a,ϵi [(ĝi

DCCDA−noise)2]− Eh,a[(ĝi
CT DE)2]

)
−

((
Eh,a,ϵi [ĝi

DCCDA−noise]
)2 −

(
Eh,a[ĝi

CT DE ]
)2)

(23c)
eq.22=

(
Eh,a,ϵi [(ĝi

DCCDA−noise)2]− Eh,a[(ĝi
CT DE)2]

)
−

(
(gi

DCCDA−noise)2 − (gi
CT DE)2)︸ ︷︷ ︸

=0

(23d)

= Eh,a,ϵi
[(ĝi

DCCDA−noise)2]− Eh,a[(ĝi
CT DE)2] (23e)

def.= Eh,a,ϵi
[(Qπ

i (h, a, ϵi)∇θi
log πi(ai|hi, θi))2]− Eh,a[(Qπ(h, a)∇θi

log πi(ai|hi, θi))2] (23f)
= Eh,a,ϵi

[Qπ
i (h, a, ϵi)2S]− Eh,a[Qπ(h, a)2S] (23g)

= Eh,a[Eϵi [Qπ
i (h, a, ϵi)2S]]− Eh,a[Qπ(h, a)2S] (23h)

= Eh,a[Eϵi
[Qπ

i (h, a, ϵi)2S]−Qπ(h, a)2S] (23i)
lem.3= Eh,a[

(
Eϵi

[Qπ
i (h, a, ϵi)2]− (Eϵi

[Qπ
i (h, a, ϵi)])2)︸ ︷︷ ︸

u

S] (23j)

≥ 0 (23k)
where line 23b follows the definition of variance. Line 23d is due to gi

DCCDA−noise = gi
CT DE according to

derivation 22a-22d. Line 23j is due to Lemma 3. The final inequality in line 23k follows because u ≥ 0 by
Jensen’s inequality: E[X2] ≥ (E[X])2, and S is the inner product of a vector itself and therefore non-negative.
Therefore, the noise version of DCCDA sample gradient has a variance greater or equal than that of the
CTDE sample gradient, i.e., V ar(ĝi

DCCDA−noise) ≥ V ar(ĝi
CT DE), which completes the proof.

C Proofs of the Theoretical Results of the Optimal Baseline

C.1 Proof of Theorem 3

In this section, we derive the optimal message-dependent baseline. The computation of the message-dependent
baseline use each agent’s critic as well as encoded messages, where messages can either be noise-free or noisy.
Therefore, the message-dependent baseline can be used in both idealistic or non-idealistic communication
setting. We have the following theorem:
Theorem 3. The optimal message-dependent baseline for DCCDA-OB gradient estimator is,

b∗
i (hi, m−i) = Eai

[Qi(hi, ai, m−i)S]
Eai [S] (24)

where S = ∇θi log πi(ai|hi, θi)T∇θi log πi(ai|hi, θi).

Proof of Theorem 3. To prove the theorem, we firstly prove that the message-dependent baseline does
not change the policy gradients gi

DCCDA (i.e., gi
DCCDA−OB = gi

DCCDA), which will be used to simplify
the variance measurement of gi

DCCDA−OB. Note that the noisy version of the DCDDA policy gradients,
gi

DCCDA−noise, also applies to the following derivations, where we can replace m−i with < h−i, a−i, ϵi >.

Therefore, we have,
Eh,a,m[bi(hi, m−i)∇θi

log πi(ai|hi, θi)] = Eh,a−i,m[bi(hi, m−i)Eai
[∇θi

log πi(ai|hi, θi)]]

= Eh,a−i,m[bi(hi, m−i)
∑
ai

πi(ai|hi, θi)∇θi log πi(ai|hi, θi)]

= Eh,a−i,m[bi(hi, m−i)
∑
ai

������
πi(ai|hi, θi)

∇θi
πi(ai|hi, θi)

������
πi(ai|hi, θi)

]

= Eh,a−i,m[bi(hi, m−i)
∑
ai

∇θi
πi(ai|hi, θi)] = Eh,a−i,m[bi(hi, m−i)∇θi

1] = 0

(25)
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where the second to the last line is due to the sum of all probabilities over agent
i’s action is 1. By integrating Equation 25 into the policy gradient gi

DCCDA−OB =
Eh,a,m[(Qi(hi, ai, m−i)− bi(hi, m−i))∇θi log πi(ai|hi, θi)], we obtain the policy gradient gi

DCCDA =
Eh,a,m[Qπ

i (hi, ai, m−i)∇θi
log πi(ai|hi, θi)]. Therefore, we have gi

DCCDA−OB = gi
DCCDA. The equality

shows that the baseline bi(hi, m−i) does not introduce bias to gi
DCCDA in expectation. Nevertheless, gi

DCCDA

and gi
DCCDA−OB may have different variance properties. We first derive the variance of the DCCDA policy

gradient estimate with the message-dependent baseline. We simplify the expression by using bi to denote the
baseline bi(hi, m−i). Therefore, by the definition of variance, we have:

V ar(ĝi
DCCDA−OB) = Eh,a,m[(ĝi

DCCDA−OB)2]−
(
Eh,a,m[ĝi

DCCDA−OB ]
)2

= Eh,a,m[((Qi(hi, ai, m−i)− bi)∇θi
log πi(ai|hi, θi))2]− (Eh,a,m[(Qi(hi, ai, m−i)− bi)∇θi

log πi(ai|hi, θi)])2

= Eh,a,m[((Qi(hi, ai, m−i)− bi))∇θi
log πi(ai|hi, θi))2]− (Eh,a,m[Qi(hi, ai, m−i)∇θi

log πi(ai|hi, θi)])2

(26)

where line 2 follows the definition of ĝi
DCCDA−OB and the last line is due to the fact

Eh,a,m[bi(hi, m−i)∇θi
log πi(ai|hi, θi)] is zero according to Equation 25. Note that S =

∇θi
log πi(ai|hi, θi)T∇θi

log πi(ai|hi, θi) is used to denote the inner product of the gradient ∇θi
log πi(ai|hi, θi)

for notation simplification. We seek the optimal baseline that would minimize this variance by setting the
derivatives with respect to the baseline bi to be zero:

∂

∂bi

[
V ar(ĝi

DCCDA−OB)
]

= ∂

∂bi

[
Eh,a,m[(Qi(hi, ai, m−i)− bi)2

S]
]

+ ∂

∂bi
[(Eh,a,m[Qi(hi, ai, m−i)∇θi log πi(ai|hi, θi)])2]

= ∂

∂bi

[
Eh,a,m[(Qi(hi, ai, m−i)− bi)2

S]
]

= 0

(27)

where the term in the second line does not depend on the baseline bi, and therefore the derivative is 0. By
writing out the term in brackets from the second to the last line in Equation 27, we have:

Eh,a,m[(Qi(hi, ai, m−i)− bi)2
S]

= Eh,a,m[
(
Qi(hi, ai, m−i)2 − 2biQi(hi, ai, m−i) + b2

i

)
S]

= Eh,a,m[Qi(hi, ai, m−i)2S − 2biQi(hi, ai, m−i)S + b2
i S]

= Eh,a,m[Qi(hi, ai, m−i)2S] + Eh,a−i,m[−2biEai
[Qi(hi, ai, m−i)S] + b2

iEai
[S]]

(28)

where the last line is because bi does not depend on actions ai. By integrating Equation 28 into Equation 27
we have:

∂

∂bi

[
V ar(ĝi

DCCDA−OB)
]

= Eh,a−i,m[−2Eai [Qi(hi, ai, m−i)S] + 2bi(hi, m−i)Eai [S]] = 0 (29)

Therefore, the optimal baseline is,

b∗
i (hi, m−i) = Eai

[Qi(hi, ai, m−i)S]
Eai

[S] (30)

where the expectation enumerates all possible actions of agent i. Then, we complete the proof.

C.2 Proof of Corollary 1

In this section, we prove that with the optimal message-dependent baseline, the variance of DCCDA
policy gradient is reduced. Note that Corollary 1 also holds for non-idealistic communication setting, i.e.,
V ar(ĝi

DCCDA−OB) ≤ V ar(ĝi
DCCDA−noise), where we replace message m−i with < h−i, a−i, ϵi > and follow

the same derivations.

We have the following corollary based on Theorem 3:
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Figure 4: The diagram of DCCDA methods integrated with OB and KL.

Figure 5: The diagram of CTDE method MAPPO.

Corollary 1. The variance of DCCDA policy gradients is reduced with the optimal message-dependent
baseline: V ar(ĝi

DCCDA−OB) ≤ V ar(ĝi
DCCDA).

Proof of Corollary 1. The proof is achieved by integrating the optimal baseline b∗
i derived from The-

orem 3 back to Equation 26, where V ar(ĝi
DCCDA) = Eh,a,m[(Qi(hi, ai, m−i)∇θi log πi(ai|hi, θi))2] −

(Eh,a,m[Qi(hi, ai, m−i)∇θi
log πi(ai|hi, θi)])2 by definition. Then we have:

V ar(ĝi
DCCDA−OB) = V ar(ĝi

DCCDA)− Eh,a−i,m[ (Eai [Qi(hi, ai, m−i)S])2

Eai
[S] ] (31)

where the second term on the right in the Equation is non-negative. Therefore, we have: V ar(ĝi
DCCDA−OB) ≤

V ar(ĝi
DCCDA), which completes the proof.

D Settings, Implementations, Algorithms, Parameters, and Additional Results

D.1 Comparison between DCCDA and CTDE

DCCDA is fundamentally different from CTDE as well as the method MADDPG. In DCCDA, messages
are learned without being predefined, essentially based on the literature on learning communication in
multi-agent deep reinforcement learning (Comm-MADRL). In CTDE, the centralized critic needs to fully
access all agents’ partial information, including their histories and actions, i.e., Q(h1, . . . hN , a1, . . . , aN ).
Similarly, in MADDPG, each agent holds a joint Q-function as Qi(h1, . . . hN , a1, . . . , aN ), which also needs
to access all agents’ information. In comparison, in DCCDA, the partial information of agents is encoded
as a low-dimensional vector (as messages), i.e., Q(hi, ai, m−i), where m−i = {m1, . . . , mi−1, mi+1, mN} is
the received messages, which can significantly reduce the input dimensionality compared to the centralized
Q-function. In order to show the differences in architecture between DCCDA and CTDE methods, we compare
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the diagram for DCCDA (See Figure 4) and the diagram for CTDE (See Figure 5) to show the differences
in their (forward) structure of neural networks. Specifically, in the diagrams, we use IPPO-Comm-OB-KL
(the DCCDA method) and MAPPO (the CTDE method) as examples to show how we train the actors,
critics, and the extended communication module. Note that IPPO-Comm-OB-KL and MAPPO differ only in
their critics (and communication) and the way to train the critics (and communication). It will be easier
to identify the differences between IPPO-Comm-OB-KL and MAPPO. As shown in the two diagrams, the
red arrows refer to the training phase. In IPPO-Comm-OB-KL, the actor modules, communication (comm)
modules, and critic modules are the neural networks. Compared to MAPPO, IPPO-Comm-OB-KL involves a
message-generation process using the actor and comm modules and the communication channel. DCCDA
agents need to encode, select, and transmit their information.

D.2 Algorithms and Implementation Details

We present two cases demonstrating the extension of two DCCDA algorithms using our proposed techniques.
Firstly, we select the state-of-the-art method under the DCCDA setting focusing on actor-critic methods,
GAAC (Liu et al., 2020), and illustrate the extension, GAAC-OB-KL, in Algorithm 1. Due to the absence
of learning communication methods under the DCCDA setting, we opt for the state-of-the-art actor-critic
method under the DTDE setting (without communication), IPPO (Yu et al., 2022), and introduce a standard
communication architecture, resulting in IPPO-Comm. Subsequently, IPPO-Comm is further extended with
our proposed techniques, forming IPPO-Comm-OB-KL, which is illustrated in Algorithm 2.

Algorithm Descriptions. In Algorithm 1, each agent’s actor, critic, and communication model are
initialized first. During each training iteration, agents communicate through the communication process
introduced by GAAC. We utilize the implementation of GAAC from a publicly accessible repository.4 In
the algorithm, agents store observations, actions, messages, rewards, new observations, Q-values, and action
probabilities in their buffer for training including computing the value of the message-dependent baseline and
the KL divergence term. When training is enabled, agents train their policies using the gradients defined
in gi

DCCDA−OB−KL = gi
DCCDA−OB + β∇θi

LKL(θi). Critics are trained in a DQN-like manner, and the
communication model is trained according to GAAC. Specifically, communication in GAAC is trained via
backpropagation, allowing gradients to flow from the critics to both the actors and the communication
modules. We use the implementation of IPPO from a publicly accessible repository.5 In IPPO-Comm-OB-KL
(and IPPO-Comm), we integrate a communication architecture that considers the historical information and
current actions of sender agents in messages, which is in line with our Assumption 1 to encode all available local
information into messages. Specifically, we have explored various methods to generate messages. Ultimately,
we chose the most effective approach: concatenating the policy distribution (which probabilistically indicates
actions) along with the history/local information (hidden states from the LSTM when using histories as
input) of the sender agents. Next, the concatenation is encoded through an MLP, and the output layer
uses softmax to produce a distribution of messages. These messages are then selected and sent to receiver
agents. The communication module in IPPO-Comm-OB-KL and IPPO-Comm is trained through policy
gradients using Q-values rather than backpropagation. The policy gradients of communication module is
defined as: gi

msg = Eh,a,m[∇θmsg
i

log fmsg
i (mi|hi, ai, θmsg

i )Qj(hj , aj , m−j)], where Qj(hj , aj , m−j) is receiver
agent’s Q-values (j ̸= i). gi

msg is then used to train each agent’s message function fmsg
i . As a result, IPPO-

Comm-OB-KL and GAAC-OB-KL differ only in how agents communicate and train their communication
models.

The use of messages. In StarCraft and Traffic Junction, messages are a vector of discrete values generated
by a probabilistic message function using a softmax output layer. Stochasticity in these environments can
arise from multiple sources. For instance, in both scenarios, agents observe the relative positions of other
agents within their vision range, which can vary stochastically due to the movement of other agents or enemies.
In Traffic Junction specifically, new cars are added to the environment at each timestep with a certain
probability. Additionally, both tasks involve learning a stochastic policy. These characteristics introduce
randomness in observations, transitions, and policies. When agents communicate, the use of a probabilistic
message function allows them to capture and reflect this inherent stochasticity present in the environment.

4The open-source code is available at https://github.com/starry-sky6688/MARL-Algorithms.
5The open-source code is available at https://github.com/marlbenchmark/on-policy.
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Algorithm 1 GAAC-OB-KL using regularized policies and message-dependent baselines
1: Initialize θi and ϕi, the parameters for each agent’s actor and critic. Initialize the communication model

for each agent.
2: for each training iteration do
3: Initialize data buffer Di for each agent i
4: Get initial observations o0 = {o1

0, ..., oi
0, ..., oN

0 } and set initial history h0
5: for t = 0 to max_steps_per_episode do
6: for each agent i do
7: Decide an action ai

t and output the corresponding probability distribution: pi
t ← πi(ai

t|hi
t, θi)

8: Generate messages mi
t from encoded observations and actions

9: Send messages to other agents
10: Aggregate received messages through a two-layer attention mechanism
11: Generate the corresponding Q-value: qi

t ← Qi(hi
t, ai

t, m−i
t )

12: end for
13: Get new observations ot+1 and rewards rt by performing actions
14: Insert experience (oi

t, m−i
t , ai

t, rt, oi
t+1, qi

t, pi
t) into Di and update hi

t for each agent i
15: end for
16: for each agent i do
17: Sample a train batch bi from buffer Di

18: Calculate the KL objective LKL(θi) using sampled experience
19: Compute the message-dependent baseline b∗

i (hi, m−i) using sampled experience
20: Update θi with Adam/RMSProp following the gradient defined in gi

DCCDA−OB−KL

21: end for
22: Update the communication model evaluated by Qi(hi

t, ai
t, m−i

t ) for each agent i
23: Update the critic parameter ϕi for each agent i with TD-learning
24: end for

D.3 Practical usage of the proposed techniques

The Effect of Value Estimation. The KL divergence term discourages the actor from selecting actions to
which the critic assigns a low value. This may constrain the exploration of the actor, especially when the
critic is learning and non-optimal. In practice, we think the negative influence needs to be removed when
critics get stuck in a local optimum, which will always push actors back to the local optimum. The baseline
values depend on Q-value estimates. When using mini-batch baseline estimation in an iterative training
fashion, the baseline values can vary across mini-batches even for the same agent history and action, since the
sampled Q-values may originate from different iterations. However, in our case, we use on-policy algorithms
(e.g., IPPO), where experience (i.e., mini-batches) is refreshed after each training iteration (at the end of an
episode). Consequently, baseline values are computed using the latest Q-value estimates and remain fixed
within each iteration. As a result, the policy gradients remain unbiased. Nonetheless, the exact amount
of variance reduction still depends on the baseline estimation, which may lead to either greater or lesser
variance reduction.

Implementations of the Proposed Techniques. Recall that in the proposed baseline technique, we use
S = ∇θi

log πi(ai|hi, θi)T∇θi
log πi(ai|hi, θi) to denote the inner production of the gradient∇θi

log πi(ai|hi, θi).
This can be computationally challenging due to the extremely high dimension of the parameter space
(parametrized by a neural network). Inspired by the work of Kuba et al. (2021), we use the softmax policy,
which allows the product to be computed in an analytical form. We further leverage the implementation of
the inner product from Kuba et al. (2021) to build our message-dependent baseline, explicitly incorporating
messages in the replay buffer and during the computation of the baseline values. Furthermore, in the KL
divergence term, we estimate the KL divergence by first computing the Boltzmann policy using local Q-values
over mini-batches. The estimated KL divergence is then calculated and averaged across the batch. During
backpropagation, gradients from the KL divergence term are propagated to the policies, introducing an
additional influence on the policy gradients.
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Algorithm 2 IPPO-Comm-OB-KL using regularized policies and message-dependent baselines
1: Initialize θi and ϕi, the parameters for each agent’s actor and critic. Initialize the communication model

for each agent.
2: for each training iteration do
3: Initialize data buffer Di for each agent i
4: Get initial observations o0 = {o1

0, ..., oi
0, ..., oN

0 } and set initial history h0
5: for t = 0 to max_steps_per_episode do
6: for each agent i do
7: Decide an action ai

t and output the corresponding probability distribution: pi
t ← πi(ai

t|hi
t, θi)

8: Generate messages mi
t from individual history and policy distribution

9: Send messages to other agents
10: Generate the corresponding Q-value: qi

t ← Qi(hi
t, ai

t, m−i
t )

11: end for
12: Get new observations ot+1 and rewards rt by performing actions
13: Insert experience (oi

t, m−i
t , ai

t, rt, oi
t+1, qi

t, pi
t) into Di and update hi

t for each agent i
14: end for
15: for each agent i do
16: Sample a train batch bi from buffer Di

17: Calculate the KL objective LKL(θi) using sampled experience
18: Compute the message-dependent baseline b∗

i (hi, m−i) using sampled experience
19: Update θi with Adam/RMSProp following the gradient defined in gi

DCCDA−OB−KL

20: end for
21: Update the communication model evaluated by Qi(hi

t, ai
t, m−i

t ) for each agent i
22: Update the critic parameter ϕi for each agent i with TD-learning
23: end for

Table 2: The essential components of all methods.

methods settings critics policy regulariza-
tion

COMA CTDE Q(s, a) − Eai [Q(s, ai, a−i)] no

MAPPO CTDE Q(s, a) − V (s) entropy

MAT CTDE Q(s, a) − V (s) entropy

IPPO-Comm DCCDA Qi(hi, ai, m−i) − Vi(hi) entropy

IPPO-Comm-OB-KL DCCDA Qi(hi, ai, m−i) − bi(hi, m−i) (Eq. 1) KL (Eq. 3)

GAAC DCCDA Qi(hi, ai, m−i) no

GAAC-OB-KL DCCDA Qi(hi, ai, m−i) − bi(hi, m−i) (Eq. 1) KL (Eq. 3)

D.4 Comparison in Baseline Methods

We illustrate the essential components of all methods and how they differ from each other in MADRL setting,
critics and policy regularization techniques in Table 2. Notably, IPPO-Comm-OB-KL and GAAC-OB-KL
inherently differ other methods due to the proposed message-dependent baseline and the regularization
concerning communication. COMA, MAPPO, and MAT use baseline techniques based on state-value or
action-value functions that do not account for encoded messages. The communication method GAAC does
not employ a baseline technique. IPPO-Comm, on the other hand, follows the same training strategies as
IPPO, which includes a baseline based on state-value functions.

D.5 Statistical Tests

In Table 5, we report the median win rate and standard deviation on all evaluated methods in SMAC
and Traffic Junction. We also report the mean and 95% confidence interval of all methods in the last 100
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Table 3: Important hyperparameters in SMAC and Traffic Junction.

SMAC Traffic Junction
Hyperparameters IPPO-Comm-OB-

KL
GAAC-OB-KL IPPO-Comm-OB-

KL
GAAC-OB-KL

actor lr 5e-4 5e-4 1e-3 1e-3
critic lr 5e-4 5e-4 1e-2 1e-2
comm lr 5e-4 5e-4 1e-3 1e-3
gamma 0.99 0.99 0.99 0.99
update epoch 10 10 10 10
mini batch 1 1 1 1
optimizer Adam Adam Adam Adam
optim eps 1e-5 1e-5 1e-3 1e-3
max grad norm 10 10 10 10
hidden dim 64 64 64 64
comm dim 64 64 64 64
attention dim None 32 None 32
eval episodes 32 32 32 32

Table 4: Compute time (in hours) across SMAC and Traffic Junction tasks averaged over 8 seeds.

Method 1o_10b_vs_1r 3s5z_vs_3s6z 5m_vs_6m 6h_vs_8z Medium Hard

COMA 21 26 17 22 8 18
MAPPO 48 50 20 51 5 11
MAT 59 89 31 44 11 19
IPPO-Comm 50 74 32 70 13 16
IPPO-Comm-OB-KL 43 78 33 56 15 20
G2Anet 64 51 29 36 15 36
G2Anet-OB-KL 56 94 71 55 15 34

evaluation periods in Table 6. GAAC-OB-KL and IPPOComm-OB-KL achieve a higher win rate compared
to all the other methods. In the meanwhile, IPPO-Comm-OB-KL and GAAC-OBKL have a lower or similar
variance in win rate than other methods except for COMA, which performs much worse in the traffic junction
domain.

D.6 Parameter Choices

Hyper-parameters used for IPPO-Comm-OB-KL and GAAC-OB-KL in the SMAC domain and Traffic
Junction are shown in Table 3. Note that we use hidden dim to refer to the hidden dimension of the
actor and critic model. We use comm dim to denote the hidden dimension of the communication model.
We further use attention dim to denote the hidden dimension of the attention model used by GAAC for
aggregating messages from the other agents. Note that hyperparameters for IPPO-Comm-OB-KL and
GAAC-OB-KL were optimised using a grid search over learning rate and batch sizes with the grid centred on
the hyperparameters used in the original papers (e.g., GAAC and IPPO) and parameter performance tested
in all used environments. We further search the optimal parameters introduced by the KL objective (i.e., the
temperature parameter and the scaling factor) and report the corresponding performance in Section D.7.

D.7 Additional Results

Compute Time. The experiments reported in the paper were conducted in parallel on a cluster using CPUs
(32 cores). Regarding compute time, we set a maximum of 4 days for SMAC tasks and a maximum of 2
days for Traffic Junction tasks. We have summarized the computational cost in terms of wall-clock time for
all methods in Table 4 averaged on 8 seeds. The wall clock time can vary across tasks and methods due
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Table 5: Median win rate and standard deviation on all evaluated methods in SMAC and Traffic Junction.

1o_10b_vs_1r3s5z_vs_3s6z5m_vs_6m 6h_vs_8z medium hard

COMA 33.8 (3.3) 0.0 (0.0) 0.1 (0.2) 0.0 (0.0) 60.9 (6.6) 42.2 (6.8)
MAPPO 21.5 (2.4) 65.9 (4.6) 32.5 (2.4) 33.9 (3.0) 71.8 (3.6) 57.4 (4.9)
MAT 58.0 (5.0) 4.1 (2.0) 3.1 (0.9) 13.5 (2.5) 72.5 (3.7) 57.8 (4.9)
IPPO-Comm 2.9 (1.3) 29.2 (4.2) 22.2 (2.3) 35.5 (2.6) 70.4 (6.4) 58.2 (4.6)
IPPO-Comm-OB 27.6 (3.4) 49.3 (4.1) 70.3 (2.7) 37.3 (2.2) 69.4 (3.6) 61.0 (3.7)
IPPO-Comm-KL 1.5 (0.8) 25.6 (3.9) 33.2 (2.8) 35.8 (2.8) 71.0 (3.8) 60.1 (4.6)
IPPO-Comm-OB-KL 42.9 (3.3) 70.9 (4.0) 72.8 (2.8) 56.4 (2.5) 72.4 (2.7) 64.2 (3.2)
GAAC 10.9 (2.6) 0.0 (0.0) 3.0 (1.1) 0.0 (0.0) 70.5 (3.4) 59.9 (4.6)
GAAC-OB 26.0 (3.6) 0.7 (0.6) 32.1 (3.0) 34.9 (2.4) 70.3 (3.4) 58.2 (4.7)
GAAC-KL 2.0 (0.9) 21.7 (3.5) 33.2 (2.8) 36.2 (2.8) 70.7 (3.2) 59.7 (4.3)
GAAC-OB-KL 35.0 (2.9) 23.0 (3.1) 56.0 (2.6) 25.3 (2.4) 73.2 (2.8) 64.5 (3.0)

to differences in environment dynamics and implementation details. Additionally, methods that can finish
episodes early require fewer time steps, resulting in lower overall wall-clock time to complete a task. As a result,
our proposed methods generally do not introduce significant additional computational costs. In particular, the
wall-clock time of IPPO-Comm-OB-KL is comparable to that of MAT. While G2Anet-OB-KL incurs higher
wall-clock time than G2Anet without OB-KL, it achieves substantially better learning performance. These
results suggest that IPPO-Comm-OB-KL maintains a reasonable runtime, and G2Anet-OB-KL demonstrates
a trade-off between computational cost and performance gains.

Variance in Gradient Norm. We present the variance in gradient norm across training steps for all
methods in Figure 6. As shown, GAAC-OB-KL and IPPO-Comm-OB-KL exhibit significantly lower variance
in policy gradients throughout training, indicating a more stable learning process compared to CTDE methods
and those without the proposed techniques.

Grid Search. We conduct a grid search to fine-tune the temperature parameter α and the scaling factor β
of IPPO-Comm-OB-KL and GAAC-OB-KL. We show the performance of IPPO-Comm-OB-KL and GAAC-
OB-KL under different combinations of α and β in all 6 tasks (as shown in Figure 7). The label names in
plots follow the format of IPPO-Comm-OB-KL_α_β and GAAC-OB-KL_α_β. Note that we present the
performance with the best parameters in the main paper.

Table 6: Bootstrap mean and 95% confidence interval of all evaluated methods in SMAC and Traffic Junction. We
mark the maximum mean value in each column in bold and underline.

1o_10b_vs_1r3s5z_vs_3s6z5m_vs_6m 6h_vs_8z medium hard

COMA 33 (33,34) 0 (0,0) 0 (0,0) 0 (0,0) 60 (59,62) 42 (40,43)
MAPPO 21 (21,21) 65 (64,66) 32 (32,32) 33 (33,34) 71 (71,72) 57 (56,58)
MAT 58 (57,58) 4 (3,4) 3 (2,3) 13 (13,14) 72 (71,73) 57 (56,58)
IPPO-Comm 2 (2,3) 29 (28,30) 22 (21,22) 35 (34,35) 70 (69,71) 58 (57,59)
IPPO-Comm-OB 27 (26,28) 49 (48,50) 70 (69,70) 37 (36,37) 69 (68,70) 61 (60,61)
IPPO-Comm-KL 1 (1,1) 25 (24,26) 33 (32,33) 35 (35,36) 71 (70,71) 60 (59,60)
IPPO-Comm-OB-KL 42 (42,43) 70 (70,71) 72 (72,73) 56 (55,56) 72 (71,72) 64 (63,64)
GAAC 10 (10,11) 0 (0,0) 3 (2,3) 0 (0,0) 70 (69,71) 59 (58,60)
GAAC-OB 26 (25,26) 0 (0,0) 32 (31,32) 34 (34,35) 70 (69,70) 58 (57,59)
GAAC-KL 2 (1,2) 21 (21,22) 33 (32,33) 36 (35,36) 70 (70,71) 59 (58,60)
GAAC-OB-KL 35 (34,35) 23 (22,23) 56 (55,56) 25 (24,25) 73 (72,73) 64 (63,65)
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Figure 6: Variance in policy gradient norm of all methods.

E Limitations

DCCDA aims to eliminate communication between actors, enabling independent execution without com-
munication. However, during training, value functions (critics) are allowed to communicate, guiding the
updates of each agent’s policy (actors). Therefore, DCCDA enables agents to benefit from communication
to improve learning efficiency during training through communicating critics, without compromising their
ability to execute the policies independently at execution time. Regarding the limitations, in scenarios where
communication is both feasible and unrestricted during training and execution, DCCDA and the proposed
methods may be less suitable.
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Figure 7: Averaged win rate under different α and β in 4 tasks of SMAC and 2 tasks of Traffic Junction.

37


	Introduction
	Related Works
	Preliminaries
	Multi-Agent Reinforcement Learning
	Policy Gradients under Different Settings

	Methods
	Variance Analysis
	The Message-dependent Baseline Technique and Regularized Policies

	Experiments
	Evaluation Results
	The Analysis of Variance in Policy Gradients
	Ablation Studies

	Conclusions
	Proofs of the Theoretical Results in Idealistic Communication Setting
	Proof of Theorem 1

	Proofs of the Theoretical Results in Non-idealistic Communication Setting
	Proof of Theorem 2

	Proofs of the Theoretical Results of the Optimal Baseline
	Proof of Theorem 3
	Proof of Corollary 1

	Settings, Implementations, Algorithms, Parameters, and Additional Results
	Comparison between DCCDA and CTDE
	Algorithms and Implementation Details
	Practical usage of the proposed techniques
	Comparison in Baseline Methods
	Statistical Tests
	Parameter Choices
	Additional Results

	Limitations

